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Abstract— We propose a new method for the propagation of
semantic labels in RGB-D video of indoor scenes given a set
of ground truth keyframes. Manual labeling of all pixels in
every frame of a video sequence is labor intensive and costly,
yet required for training and testing of semantic segmentation
methods. The availability of video enables propagation of labels
between the frames for obtaining a large amounts of annotated
pixels. While previous methods commonly used optical flow
motion cues for label propagation, we present a novel approach
using the camera poses and 3D point clouds for propagating
the labels in superpixels computed on the unannotated frames
of the sequence. The propagation task is formulated as an
energy minimization problem in a Conditional Random Field
(CRF). We performed experiments on 8 video sequences from
SUN3D dataset [1] and showed superior performance to an
optical flow based label propagation approach. Furthermore,
we demonstrated that the propagated labels can be used to
learn better models using data hungry deep convolutional
neural network (DCNN) based approaches for the task of
semantic segmentation. The approach demonstrates an increase
in performance when the ground truth keyframes are combined
with the propagated labels during training.

I. INTRODUCTION

Semantic segmentation is one of the ingredients of scene
understanding beneficial to a variety of robotic tasks. For
example capability of semantic parsing on indoors scenes
supports better localization, context understanding for recog-
nition and or manipulation or path planning and navigation.
Semantic segmentation requires simultaneous segmentation
and categorization of image regions and assigning semantic
category labels to image pixels. Most effective machine
learning approaches for this task use either Deep Convo-
lutional Neural Networks (DCNN) or Conditional Random
Fields (CRF) for this task. Training of these models requires
pixel level ground truth labels and the annotation process is
often costly and labor intensive. In case of video sequences,
several previous works explored the strategy of annotating
few keyframes and used label propagation techniques to
obtain labels in additional frames. Some of the representative
methods were initially developed for video sequences with
multiple moving objects and static backgrounds.

In this work, we describe a novel label propagation method
for indoor RGB-D video sequences captured by either hand-
held camera or camera mounted on robotic platform. Our
method overcomes optical-flow challenges of low textured
indoors scenes using superpixel representations of indoors
scene along with its dominant 3D planes estimated from 3D
point cloud and exploits the ego-motion between the frames
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Fig. 1: Our objective is to propagate labels from annotated
keyframes in a video sequence to frames with missing anno-
tations. For a pairs of keyframes, we transfer their labels from
image pixels into the 3D point cloud, followed by a forward
projection on the unannotated frames between the keyframes.
In order ensure smoothness in propagation, we employ su-
perpixels and energy minimization in a Conditional Random
Field (CRF). Finally, we demonstrate that the propagated
labels can be effectively used to train a Deep Convolutional
Neural Network [2] for semantic segmentation.

for registration and general camera pose estimation. We
propose an energy based formulation of the label propagation
exploiting superpixels and evaluate the proposed method on
a subset of withheld ground truth frames.

We further investigate the effectiveness of using the
propagated labels for training Deep Convolutional Neural
Network (DCNN) model for the task of semantic segmen-
tation. Experimenting with various combination of manually
annotated labels and propagated labels we concluded that
the propagated labels are useful to learn models that give
improved performance for the semantic segmentation. In
summary, the contributions of the paper are listed as follows:

i) We introduce novel energy minimization formulation
of label propagation for RGB-D videos of indoors scenes
utilizing camera poses and 3D point clouds aggregated
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Fig. 2: Superpixel generation from our method. The RGB image is shown in (a), while (b) depicts the large-planar surfaces
and (c) their corresponding edges. (d) and (e) present the superpixels generated by the method of [3] and the superpixels
from our method respectively.

through superpixels. The choice of superpixels enables us
to deal favorably with large untextured regions often present
in indoors scenes. The use of camera pose and 3D geom-
etry for propagation overcomes some of the difficulties of
traditionally used optical flow based methods [4], [5].

ii) We evaluate experimentally the effect of using different
proportions of the propagated labels for training a Deep
Convolutional Neural Network (DCNN) [2] for the task
of semantic segmentation demonstrating that the additional
training data improves the performance. The evaluation is
carried out on RGB-D videos of SUN3D [1] scenes. An
overview of our approach is shown in Figure 1.

II. RELATED WORK

Here we briefly review the works related to ours in
label propagation and representative works in the areas of
semantic segmentation and generation of additional training
data for deep CNNs. The previous approaches for dense
label propagation in videos varied in the types of scenes
considered or types of ground truth annotations.

Label Propagation: Badrinarayanan et al. [6] proposed
an HMM-based inference method for transferring labels from
the first and last annotated keyframes into the remaining
unlabeled frames for outdoor video sequences. The work
of [4] suggested a probabilistic formulation of the problem
by combining information from optical flow, appearance
and spatial proximity cues from adjacent labeled frames to
the unlabeled ones. Authors in [5] more recently followed
a similar approach for label propagation in outdoor video
frames and demonstrated the efficacy of the propagated
labels for learning a better model for semantic segmentation.
Miksik et al. [7] introduced a filtering algorithm that predicts
per-pixel label distribution from a separate model in the
current frame, then it temporally smooths out the prediction
from previous frame. All of these approaches use forward or
backward optical flow computation. The flow has difficulties
in the presence of large motions, textureless regions and
occlusions, which are all abundant in indoors environments.
Inaccurate flow can cause errors in the labeling and is unable
to handle disappearance and reappearance of objects in the
FOV.

Semantic Segmentation: The task of semantic segmen-
tation has been tackled by strategies using multi-class CRFs
or classification of bottom-up segmentation using hand-
engineered features [8], [3], [9], [10]. Recent adoption of

Deep Convolutional Neural Network (DCNN) for semantic
segmentation surpassed the earlier approaches in predictive
performance. The DCNN based approaches leverage effec-
tive feature learning and end-to-end pixel level training. One
pioneering example of such strategies is the fully convolu-
tional network (FCN) [11]. Building on the success of FCN,
the other DCNN approaches refine the fully convolutional
output with the help of CRFs [12] or other global energy
models [13] to get better boundaries of the predicted region.

Synthetic Data: There are several works that address
the problem of the limited availability of training data by
generating synthetic data for a specific task [14], [15], [16].
[14] used 3D CAD object models to generate images by ran-
domizing the pose of the objects for the purpose of training
object detectors. For semantic segmentation, the work of [15]
leverages the Grand Theft Auto video game engine in order
to generate per-pixel annotations for realistic scenes in the
game, while [16] takes advantage of 3D synthetic scenes
generated from CAD models to create annotations from
any arbitrary pose. All of these approaches, however, create
annotations using synthetic computer graphics generated
data. Models trained on synthetic data alone typically under-
perform when applied on real images, therefore, the synthetic
data are usually used to augment existing real training sets in
order to boost the performance. In contrast, label propagation
approaches produce annotations for real images by taking
advantage of pre-existing but limited number of annotations.
The expected performance improvement however is not as
large, since the additional training examples are previously
included categories, with slightly bigger viewpoint varia-
tions.

III. APPROACH

To overcome difficulties of the pixel label propagation
techniques, we formulate the propagation method on super-
pixels. For each unlabeled frame, we use the two nearest
labeled keyframes to propagate label information via asso-
ciated 3D point cloud. The ground truth image labels are
first projected to 3D point cloud and using the camera pose
information transformed to the unlabeled frame to provide
label evidence for each superpixel. Finding the most likely
label for all the pixels in an unlabeled frame is formulated
as energy minimization in Conditional Random Field (CRF)
framework. Experimentally we show that the propagated
labels are useful for training better Deep Convolutional



Fig. 3: We project the labels from the 3D point cloud into the image, and compute unary score based on the projected labels
for each superpixel (b). The unary energies for a few representative classes are shown in (c). Blue color signifies lower
energy for our minimization problem. With these unaries and a pairwise score, we solve the inference using Graph Cuts
algorithm to get the final labeling in (d). (a) shows the RGB and the superpixels generated by our method.

Neural Network (DCNN) for the semantic segmentation task.
In following two subsections we describe in detail of our
superpixel generation and label propagation method.

A. Superpixel

An important step for our label propagation algorithm is
the generation of superpixels for each RGB-D frame. The
superpixel generation method relies on high quality image
contours in a Multi-scale Combinatorial Grouping (MCG)
framework as used in [3]. In order to ensure that dominant
planar surfaces are covered by large superpixels, we identify
the large planar regions that are aligned to the dominant
axes in the scene [17]. The image boundaries (Figure 2c) of
the large planes (Figure 2b) augment the contour detection
results of [3]. These modified contours are then used by
MCG to generate superpixels. Figures 2d and 2e show the
superpixels from [3] and ours respectively. Notice in our
case the right wall is segmented correctly due to the use
of dominant planar regions detection step. We use these
superpixels in our label propagation algorithm.

B. Label Propagation

The task of label propagation can be defined to be the
problem of transferring labels from a limited set of annotated
keyframes to the rest of the unlabeled frames in a video
sequence. Formally, let’s assume we are given a video se-
quence consisting of frames {I1, I2, ..., IN} and ground truth
annotation for a subset M keyframes. Here M is significantly
smaller than the total number of available frames N . There
are (N − M) available frames {I1, I2, ..., IN−M} in the
sequence for which we seek to propagate labels using the
available annotated frames. In this work, we formulate the
label propagation task of an unlabeled frame as an energy
minimization problem in a Conditional Random Field (CRF)
framework. More precisely for a given unlabeled frame Ik,
we wish to minimize the following energy function:

E(Xk|Ik, Al, Al+1) =
∑
i∈V

θi(xi; Ik, Al, Al+1)+∑
(i,j)∈ζ

ψij(xi, xj ; Ik, Al, Al+1)
(1)

Here θi(.) and ψij(.) are the unary and pairwise energy
functions respectively. The CRF graph G = (V, ζ) is defined
over the pixels in the image Ik and we follow a 4-connected
neighborhood system. We utilize the two closest labeled
keyframes from Ik namely Al and Al+1 from the available
set of labeled keyframes. Let’s assume Im and In stand
for the images corresponding to labeled frames Al and
Al+1 respectively. Then the frame Ik which is subjected to
propagation in Equation 1 lies in between the Im and In
such that m < k < n. We encode the unary and pairwise
energy terms as follows:

Unary Term: From the labeled keyframes Al and Al+1,
we get the labeled 3D point cloud using the camera pose
information and project it into each superpixel. Within the
superpixel, we distribute the same score to all the pixels. Our
unary term is computed as follows:

θi(xi; Ik, Al, Al+1) = −F (xi; Ik, Al, Al+1) (2)

where F (.) is the scoring function for the superpixel that en-
compasses the pixel i. This function estimates the probability
of semantic labels {c1, c2, ..., cL}. Using the camera poses
(rotation, translations), namely (Rl,Tl) and (Rl+1,Tl+1), we
project the labeled point clouds into the current frame Ik
using the standard camera perspective projection. For each
superpixel, we count the number of projected pixels with a
particular label cj . Then we find the ratio of this count with
the size of the superpixel as the score f cjl for label cj . We can
get a similar score f cjl+1 from the other labeled frame. These
two scores are averaged to give us the final score F (.) for
label cj . This superpixel score is distributed across all the
pixels inside it to give us pixel level scores on which we
optimize the energy function in Equation 1.



Fig. 4: Qualitative results for the label propagation experi-
ment on the 8 video sequences from SUN3D [1]. From left
to right we show the RGB image, the ground truth (GT), the
optical-flow-based label propagation (OF), and the 3D point
cloud projection-based label propagation (Ours).

Frame 23 Frame 39 Frame 51 Frame 64

Fig. 5: Comparison between the baseline optical-flow-based
(middle row) and our projection-based (bottom row) label
propagation in a video sequence. Notice that pillows get out
of the field-of-view on frame 39 and OF fails to recover
their label in frames 51 and 64 when they come into view
again. In contrast, our approach has no problem retrieving
the correct labels. Best viewed in color.

Pairwise Term: The pairwise energy function is en-
forced by a simple Potts model, which penalizes the adjacent
pixels with different labels as follows:

ψij(xi, xj ; Ik, Al, Al+1) =

{
0, li = lj
b, li 6= lj

(3)

where b has been empirically set to 2.5 for all our ex-
periments. This enforces a smoothness in the label predic-
tion. The proposed energy is then minimized using Graph-
Cuts [18]. Our label propagation algorithm is depicted in
Figure 3.

Scene # Frames # KF-all # KF-prop # KF-eval
hotel-umd 1869 82 62 20

hv-c5 2063 24 18 6
studyroom 3322 49 37 12

mit-32 5444 109 82 27
dorm 2675 56 42 14
hv-c6 961 25 19 6
hv-c8 1003 23 18 5

mit-lab 1906 13 10 3

TABLE I: Statistics of the 8 video sequences in SUN3D [1].
KF-all shows the total number of keyframes per scene, KF-
prop refers to the number of keyframes used to propagate
the labels into the unannotated frames, and KF-eval shows
the number of keyframes used for evaluation of our label
propagation approach.

Fig. 6: Semantic segmentation results on scenes from the
SUN3D [1] dataset. From left to right we show the RGB
image, the manually-annotated ground truth, and the results
from the models trained with the GT, GT+Prop-small, and
GT+Prop-large. When using only the keyframes to train
(GT) we notice that the segmentation is often cluttered
with wrong label predictions. In contrast, the models trained
with a combination of keyframes and propagated labels
GT+Prop-small, and GT+Prop-large produce a smoother
output with clearer boundaries for the semantic classes. Note
also that for some images, a large portion of the ground
truth annotations are missing (rows 1 and 3) for which the
semantic segmentation predicts the correct semantic classes.

IV. EXPERIMENTS

We validated our approach on the 8 RGB-D video se-
quences from SUN3D [1]. In each video few keyframes are
annotated using the LabelMe [19]. We use a subset of these
keyframes to propagate labels into the unlabeled ones and the
rest of the keyframes to validate our propagation in a video
sequence. Table I shows the statistics for the video sequences.
We used 11 object classes: Unknown, Bed, Ceiling, Chair,
Floor, Furniture, Objects, Picture, Table, Wall, and Window.
We measure the performance using three different metrics
i) average per-class: proportion of correctly labeled pixels
for each class then average these proportions, ii) average
IoU: finds the intersection over union of the labeled segments
for each class then computes the averages over classes, and
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Average per class
OF 42.3 96.5 54.7 83.3 89.4 92.6 83.6 88.7 94.8 90.6 92.3 82.6 80.3

Ours 57.0 98.8 69.3 90.0 93.3 96.1 88.8 91.5 97.6 97.5 87.5 88.0 87.4
Average IoU

OF 35.7 93.9 52.7 71.5 67.0 83.3 68.4 85.5 81.9 75.9 84.4 72.8 -
Ours 50.2 96.1 66.2 78.9 76.2 89.8 83.4 89.5 89.7 87.2 76.1 80.3 -

TABLE II: Label propagation accuracies (%) in different metrics-average per class, average IoU, and global-on the SUN3D
video sequences [1]. We compare to the optical-flow-based (OF) baseline and demonstrate superior performance.

iii) global accuracy: proportion of correctly labeled pixels
for all classes together. Next we describe the results of our
experimentation.

A. Label Propagation

In each video sequence, we used 75% of the total
keyframes to propagate labels into the unannotated frames
and the remaining 25% to validate the propagation. Table I
column 4 shows the number of keyframes used for prop-
agation. We used 93 in total keyframes during evaluation
(in Table I last column). We compared our results against a
propagation scheme, which uses similar CRF formulation to
ours; instead of using the 3D labeled point cloud projection
score, we utilized optical flow to transfer labels from an
adjacent frame. This method is similar to the methods of [5],
[4] that use optical flow and appearance cues for label
propagation. We refer to this optical-flow-based propagation
as our baseline.

Optical Flow Based Label Propagation: The base-
line optical-flow-based label propagation differs from our
projection-based label propagation in the way we compute
the unary term in the CRF energy in Equation 1. In this
approach, the labels are always propagated from the previous
frame. Optical-Flow1 is computed from frame Ik to frame
Ik−1. Having the optical flow computed for each pixel in the
current frame Ik, we can accumulate the optical flow vectors
inside a superpixel sjk to find a set of superpixels Sk−1 =
{s1k−1, s2k−1, ..., sLk−1} in the previous frame Ik−1. This set
of superpixels Sk−1 in the previous frame indicates where
the collective optical flows of the pixels inside superpixel sjk
will lead it. We find the color-based appearance similarities
between superpixels in the set Sk−1 and superpixel sjk.
This similarity is weighted by a size based score. More
specifically, the scoring function G(.) of unary term for label
l is computed as follows:

G(sjk; Ik−1) = φ(sjk, s
l
k−1)IoU(sjk, s

l
k−1) (4)

Here φ(sjk, s
l
k−1) is χ2 distance between the HSV color

histograms. IoU(sjk, s
l
k−1) is intersection over union ratio

between the two superpixels.

1We used the open source implementation of the Matlab toolbox
https://www.cs.cmu.edu/ katef/LDOF.html

Results: In Table II we present the evaluation of our
label propagation algorithm on 11 object categories. We
compare our projection-based propagation (described in III-
B) to the optical-flow-based baseline in the average per-
class, average IoU, and global accuracy metrics and show
an average improvement of 5.4%, 7.5% and 7.1% respec-
tively over the baseline. Figure 4 presents some qualitative
examples where we observe the superior performance of
our approach. For instance, in the bottom row, optical-flow
completely missed the categories of Floor, Table, and most
of Chair. This is clearly illustrated in Figure 5 where optical
flow fails to recover a label for an object that went out of
view for a certain number of frames.

B. Semantic Segmentation with Propagated Labels

Next we show the effect of using additional labels for
learning DCNN models for semantic segmentation task.
Many DCNN architectures have been proposed for semantic
segmentation e.g., Fully Convolutional Network (FCN) [11],
DeepLab [12], SegNet [2] to mention a few. To show
the effectiveness of the propagated labels, we selected the
Encoder-Decoder architecture of SegNet [2] and trained it
for semantic segmentation of ten object classes Bed, Ceiling,
Chair, Floor, Furniture, Objects, Picture, Table, Wall, and
Window in indoor scene. Following up with our label prop-
agation experiment, we partitioned the 8 video sequences
of SUN3D [1] into equal halves of 4 training and 4 testing
video sequences. The 4 training videos have 264 keyframes
(video sequences hotel-umd, hv-c5, studyroom, and mit-32 in
Table I). We used the 199 keyframes to train our baseline
semantic segmentation model (video sequences hotel-umd,
hv-c5, studyroom, mit-32 in Table I column 4). This model
is referred to as GT. Additionally, we prepared two subsets
of training sets with propagated labels of different sizes;
Prop-small and Prop-large. For Prop-small, we maintained
a similar size (199 images in total) to our baseline GT of
annotated keyframes. Let us define a propagation interval to
be the set of unannotated frames in between two consecutive
keyframes from which labels are propagated (see III-B). We
randomly sample a propagated frame from all the frames
within a propagation interval. Accumulating all such samples
across all the propagation intervals from the training video
sequences make up the training set Prop-small. Prop-large
consists of a set of 2488 images with propagated labels by
taking every 5-th frame from each of the training video



Train set Global Average Per-Class average IoU
GT 65.1 50.3 36.4

Prop-small 64.0 46.2 34.1
Prop-large 70.1 49.8 39.4

GT+Prop-small 68.1 50.7 40.9
GT+Prop-large 70.8 52.5 41.7

TABLE III: Semantic segmentation accuracies comparison in
three different metrics (%): Global, Average Per-class, and
average IoU.

sequences. Additionally, we also created two other training
sets by augmenting the manually-annotated keyframes with
our two sets of training images with propagated labels. These
two different sets are referred to as GT+Prop-small and
GT+Prop-large. All the trained models are evaluated on all
the 119 keyframes of 4 test videos (dorm, hv-c6, hv-c8, mit-
lab in Table I in column 3). For the training sets of GT,
Prop-small, GT+Prop-small we trained the models for 40000
iterations, and for the sets of Prop-large and GT+Prop-large
we trained for 50000 iterations. For all the models we used
a learning rate of 0.001. SegNet is trained using the cross-
entropy loss function. In order to mitigate the dominance
of more frequently appearing classes over the less frequent
ones, we followed the median-frequency-balancing scheme
of [20] to compute the weights associated with each class as
suggested by the authors of SegNet [2].

Results: The results of our semantic segmentation with
propagated labels are tabulated in Table III. The performance
is reported in the metrics of global, average per-class, and
average IoU accuracy, as shown in [2]. We observe that
by slightly augmenting the current keyframes (GT+Prop-
small) we get an increase in performance of 3% in global
accuracy, 4.5% in average IoU, and 0.4% in average per-
class accuracy. The best performing model is GT+Prop-large
which attains a 5.7% increase in global accuracy, a 5.3%
increase in average IoU, and a 2.2% increase in average
per-class accuracy compared to the GT training set. These
results suggest the effectiveness of our propagated labels for
learning better models for semantic segmentation. We show
some qualitative comparisons of the predicted images from
these different models in Figure 6.

In the case of Prop-large, which uses only the propagated
labels for training, we get improvement in global, average
IoU accuracies, but we observe a small drop in the average
per class compare to GT. When we use Prop-small which
has the same size as GT, we notice a slight degradation of
performance in all three metrics. This is expected due to
the fact that small errors in labeling are introduced during
the propagation stage. One such error is the inconsistency in
labeling a same region in multiple keyframes.

V. CONCLUSIONS

We presented an approach for label propagation in RGB-
D video sequences which introduces a novel energy mini-
mization formulation in a Conditional Random Field (CRF).
The label propagation is facilitated by taking advantage

the camera poses of the frames and 3D point clouds. Our
experiments reveal that our approach outperforms an optical
flow based propagation in different evaluation metrics. Fur-
thermore, we have demonstrated that the propagated labels
can be effectively utilized for training DCNNs for semantic
segmentation. Models trained with our propagated labels
perform comparably and sometimes better than the models
trained with the manually-annotated keyframes only. This
suggests that the propagated labels are consistent throughout
the video sequence and provide with accurate annotations.
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