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Abstract

The localization capability of a mobile robot is central to basic navigation and map building
tasks. We describe a probabilistic environment model which facilitates global localization
scheme by means of location recognition. In the exploration stage the environment is par-
titioned into a class of locations, each characterized by a set of scale-invariant keypoints.
The descriptors associated with these keypoints can be robustly matched despite changes
in contrast, scale and viewpoint. We demonstrate the efficacy of these features for location
recognition, where given a new view the most likely location from which this view came is
determined. The misclassifications due to dynamic changes in the environment or inherent
appearance ambiguities are overcome by exploiting neighborhood relationships captured
by a Hidden Markov Model. We report the recognition performance of this approach in an
indoor environment consisting of eighteen locations and discuss the suitability of this ap-
proach for a more general class of recognition problems. Once the most likely location has
been determined we demonstrate how to robustly compute the relative pose between the
representative view and the current view, despite the partial absence of intrinsic parameters
of the camera.

1 Introduction and Related Work

The two main instances of mobile robot localization problem are the continuous
pose maintenance problem and the global localization also known as ’robot kidnap-
ping’ problem. While the successful solution to the localization problem requires
addressing both, here we concentrate only on the global localization aspect. The
problem of vision-based global localization shares many aspects of object recog-
nition and hence is amenable to use of similar methodologies. While several in-
stances of vision-based localization have been successfully solved in smaller scale
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environments (1; 2; 3; 4), the applicability of these methods to large dynamically
changing environment poses additional challenges and calls for alternative models.
The methods for localization vary in the choice of features and the environment
model. The two main components of the environment model are the descriptors
chosen to represent an image and the representation of changes in image appear-
ance as a function of viewpoint. Similarly as in the case of object recognition, both
global and local image descriptors have been considered. The class of global image
descriptors consider the entire image as a point in the high-dimensional space and
model the changes in appearance as a function of viewpoint using subspace meth-
ods (5). Given the subspace representation the pose of the camera was typically
obtained by spline interpolation method, exploiting the continuity of the mapping
between the object appearance and continuously changing viewpoint. Robust ver-
sions of these methods have been applied in the robot localization using omnidirec-
tional cameras (1). Alternative global representations proposed in the past include
responses to banks of filters (6), multi-dimensional histograms (7; 8) or orientation
histograms (9). These types of global image descriptors integrated the spatial image
information and enabled classification of views into coarser classes (e.g. corridors,
open areas), yielding only qualitative localization. In the case of local methods, the
image is represented in terms of localized image regions, which can be reliably de-
tected. The representatives of local image descriptors include affine or rotationally
invariant features (10; 11) or local Fourier transforms of salient image regions (12).
Due to the locality of these image features, the recognition is naturally prone to
large amounts of clutter and occlusions. The sparser set of descriptors were in case
of both global and local methods, typically obtained by principal component anal-
ysis or various clustering techniques.

Our approach is motivated by the recent advances in object recognition using local
scale invariant features proposed by (10) and adopts the strategy for localization
by means of location recognition. The image sequence acquired by a robot during
the exploration is first partitioned to individual locations. The locations correspond
to the regions of the space across which the features can be matched successfully.
Each location is represented by a set of model views and their associated scale-
invariant features. In the first localization stage, the current view is classified as
belonging to one of the locations using standard voting approach. In the second
stage we exploit the knowledge about neighborhood relationships between individ-
ual locations captured by Hidden Markov Model (HMM) and demonstrate an im-
provement in the overall recognition rate. The main contribution of this stage of the
presented work is the instantiation of the Hidden Markov Model in the context of
this problem and demonstration of an improvement in the overall recognition rate.
This step is essential particularly in the case of large scale environments which
often contain uninformative regions, violating the continuity the of the mapping
between the environment appearance and camera pose. In such case imposing a
discrete structure on the space of continuous observations enables us to overcome
these difficulties while maintaining a high recognition rate. Once the most likely
view has been determined we will show a simplified method for computing the rel-



Fig. 1. The circle center represents the keypoint’s location and the radius the keypoint’s
scale.

ative pose of the robot with respect to model view in the absence of the focal length
of the camera. This second stage will then enable local metric localization given
the model.

2 Scale-Invariant Features

The use of local features and their associated descriptors in the context of ob-
ject recognition has been demonstrated successfully by several researchers in the
past (13; 14; 15). In this paper we examine the effectiveness of scale-invariant
(SIFT) features proposed by D. Lowe (10). The SIFT features correspond to highly
distinguishable image locations which can be detected efficiently and have been
shown to be stable across wide variations of viewpoint and scale. Such image loca-
tions are detected by searching for peaks in the imageD(x, y, σ) which is obtained
by taking a difference of two neighboring images in the scale space

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ).

The image scale spaceL(x, y, σ) is first build by convolving the image with Gaus-
sian kernel with varyingσ, such that at particularσ, L(x, y, σ) = G(x, y, σ) ∗
I(x, y). Candidate feature locations are obtained by searching for local maxima
and minima ofD(x, y, σ). In the second stage the detected peaks with low contrast
or poor localization are discarded. More detailed discussion about enforcing the
separation between the features, sampling of the scale space and improvement in
feature localization can be found in (10; 16). Once the location and scale have been
assigned to candidate keypoints, the dominant orientation is computed by deter-
mining the peaks in the orientation histogram of its local neighborhood weighted
by the gradient magnitude. The keypoint descriptor is then formed by computing
local orientation histograms (with 8 bin resolution) for each element of a4× 4 grid
overlayed over16 × 16 neighborhood of the point. This yields 128 dimensional
feature vector which is normalized to unit length in order to reduce the sensitivity
to image contrast and brightness changes in the matching stage. Figure 1 shows the
keypoints found in the example images in our environment. In the reported experi-



Fig. 2. The map on the fourth floor of our building. The arrows correspond to the heading
of the robot and the labels represent individual locations.

ments the number of features detected in an image of size480×640 varies between
10 to 1000. In many instances this relatively low number of keypoints, is due to the
fact that in indoors environments many images have small number of textured re-
gions. Note that the detected SIFT features correspond to distinguishable image
regions and include both point features as well as regions along line segments.

3 Environment Model

The environment model, which we will use to test our localization method is ob-
tained in the exploration stage. Given a temporally sub-sampled sequence acquired
during the exploration (images were taken approximately every 2-3 meters), the se-
quence is partitioned into 18 different locations. The exploration route can be seen
in Figure 3. Different locations in our model correspond to hallways, sections of
corridors and meeting rooms approached at different headings. In the current ex-
periment, the environment is mostly comprised of network of rectangular corridors
and hallways which are typically traversed with four possible headings (N, S, W,
E). The deviations from these headings can be handled as long as there is a suffi-
cient overlap between the model views acquired during the exploration and current
views. In case the current view cannot be matched successfully, a new location is
added to the model. The number of views per location vary between 8 to 20 de-
pending on the appearance variation within the location. The transitions between
the locations occur either at places where navigation decisions have to be made
or when the appearance of the location changes suddenly. The transitions between
individual locations are determined depending on the number of features which
can be successfully matched between the successive frames. These are depicted in
Figure?? for a sequence captured by a still digital camera along the path which
visited all eighteen locations (some of them twice) and for a video sub-sequence
along a path which visited three locations. The transitions between individual lo-
cations are marked by the peaks in the graph, corresponding to new locations. In
order to obtain a more compact representation of each location a number of repre-
sentative views is chosen per location, each characterized by a set of SIFT features.
The sparsity of the model is directly related to the capability of matching SIFT



Fig. 3. The number of keypoints matched between consecutive views for the sequence
comprised of 18 locations (snapshot was taken every 2-3 meters) captured by a digital
camera (left); the number of keypoints matched between the first andi-th view for a video
sequence comprised of 3 locations (right).

Fig. 4. Examples of representative views of 14 out of 18 locations.

features in the presence of larger variations in scale. The number of representative
views varied between one to four per location and was obtained by regular sam-
pling of the views belonging to individual locations. Examples of representative
views associated with individual locations are depicted in Figure 4.

4 Location recognition

The environment model obtained in the previous section consists of a database of
model views1 . Thei-th location in the model, withi = 1, . . . N is represented byn
viewsI i

1, . . . , I
i
n with n ∈ {1, 2, 3, 4} and each view is represented by a set of SIFT

features{Sk(I
i
j)}, wherek is the number of features. In the initial stage we tested

the location recognition by using a simple voting scheme. Given a new query image
Q and its associated keypoints{Sl(Q)} a set of corresponding keypoints between

1 It is our intention to attain a representation of location in terms of views (as opposed
to some abstract features) in order to facilitate relative positioning tasks in the later metric
localization stage.



(# of views) #1 (250) #2 (134) #3 (130)

one 84% 46% 44%

two 97.6% 68% 66%

four 100% 82% 83%
Table 1
Recognition performance for one training and two test sequences in terms of % of correctly
classified views as a function of number of representative views.

Q and each model viewI i
j, {C(Q, I i

j)}, is first computed. The correspondence is de-
termined by matching each keypoint in{Sl(Q)} against the database of{Sk(I

i
j)}

keypoints and choosing the nearest neighbor based on the Euclidean distance be-
tween two descriptors. We only consider point matches with high discrimination
capability, whose nearest neighbor is at least 0.6 times closer then the second near-
est neighbor. More detailed justification behind the choice of this threshold can be
found in (10). In the subsequent voting scheme we determine the location whose
keypoints were most frequently classified as nearest neighbors. The location where
the query imageQ came from is then determined based on the number of success-
fully matched points among all model views

C(i) = max
j

|{C(Q, I i
j)}| and [l, num] = max

i
C(i)

wherel is the index of location with maximum numbernum of matched keypoints.
Table 1 shows the location recognition results as a function of number of repre-
sentative views per location on the training sequence of 250 views and two test
sequences of 134 and 130 images each. All three sequences were sparse with im-
ages taken 2-3 meters apart. The two test sequences were taken at different days and
times of day, exhibiting larger deviations from the path traversed during the train-
ing. Despite a large number of representative views per location relatively poor
performance on the second and third test sequence was due to several changes in
the environment between the training and testing stage. In 5 out of 18 locations sev-
eral objects were moved or misplaced. Examples of dynamic changes can be seen
in Figure 5. The poorer performance due to dynamic changes is not surprising,
since the most discriminative SIFT features often belong to objects some of which
are not inherent to particular locations. In the next section we describe how to re-
solve these issues by modelling the neighborhood relationships between individual
locations.

5 Modelling spatial relationships between locations

We propose to resolve these difficulties by incorporating additional knowledge
about neighborhood relationships between individual locations. The rationale be-
hind this choice is that despite the presence of ambiguities in recognition of indi-



L4 train L4 test

L6 train L6 test

Fig. 5. Changes in the appearance of locationL4 andL6 between the training and testing.
In the left image pair the bookshelve was replaced by a table and couch and in the right pair
recycling bins were removed.

vidual views the temporal context should be instrumental in resolving them. The
use of temporal context is motivated by the work of (17) which addresses the place
recognition problem in the context of wearable computing application. The tempo-
ral context is determined by spatial relationships between individual locations and
is modelled by a Hidden Markov Model (HMM). In this model the states corre-
spond to individual locations and the transition function determines the probability
of transition from one state to another. Since the locations cannot be observed di-
rectly each location is characterized by The most likely location is at each instance
of time obtained by maximizing the conditional probabilityP (Lt = li|o1:t) of being
at timet and locationli given the available observations up to timet. The location
likelihood can be estimated recursively using the following formula

P (Lt = li|o1...t) ∝ p(ot|Lt = li)P (Lt = li|o1:t−1) (1)

wherep(ot|Lt = li) is the observation likelihood, characterizing how likely is the
observationot at timet to come from locationli. The choice of observation likeli-
hood depends on the available observations and the matching criterion. When local
descriptors are used as observations, several such choices have been proposed in
the context of probabilistic approaches to object recognition (18; 19). The pro-
posed likelihood functions properly accounted for the density and spatial arrange-
ments of features and improved overall recognition rate. In the context of global
image descriptors the locations were modelled in terms of Gaussian mixtures pro-
posed in (17). Since the location recognition problem is notably simpler then the
object recognition problem due to occlusions and clutter not being some promi-
nent, we used a simpler form of the likelihood function. The conditional probabil-
ity p(ot|Lt = li) that a query imageQt at timet characterized by an observation



Seq. 2 with and without HMM

Seq. 3 with and without HMM

Fig. 6. Classification results for Sequence 2 and Sequence 3 with and without considering
the spatial relationships. The black circles correspond to the labels of most likely locations.

ot = {Sl(Qt)} came from certain location, is directly related to the cardinality of
the correspondence setC(i) and the distance between individual descriptors. Lets
denote the set of descriptors associated with the query view{gQ

k } and the{gi
k} set

of descriptors of the ith model view. We then denote

p(ot|Lt = li) = p({gQ
k }|Lt = li) = 1− (Πn

k=1(1− exp(− αi
k

2σ2
))

whereαi
k is so called strangeness parameter and is defined as

αi
k =

mingj∈Si
(‖gQ

k − gj‖)
mingj /∈Si

(‖gQ
k − gj‖)

. (2)

It is the ratio of minimal intra-distance within the class and minimal inter-distance
to location putative labell. If αi

k is greater than 1, the featuregQ
k is not contributing

to classification ofQ as labeli. In order to explicitly incorporate the location neigh-
borhood relationships, the second term of equation (1) can be further decomposed

P (Lt = li|o1:t−1) =
N∑
j

A(i, j)P (Lt−1 = lj|o1:t−1) (3)

whereN is the total number of locations andA(i, j) = P (Lt = li|Lt = lj) is the
probability of two locations being adjacent. In the presence of a transition between
two locations the corresponding entry ofA was assigned a unit value and in the final
stage all the rows of the matrix were normalized. The results of location recogni-
tion employing this model are in Figure 6. The recognition rate for Sequence 2 was
96.3% and for Sequence 3 it was95.4%. The location label assigned to each image



is the one with the highest probability. While in both cases some images were mis-
classified the overall recognition rates are an improvement compared to the rates
reported in Table 1. Despite the classification errors in Sequence 2, the order of vis-
ited locations was correctly determined. For Sequence 3, where we exhibited some
intentional deviations between the path taken during training and testing, the classi-
fication of location 14 was incorrect. The effect of HMM model can be examined by
making all the probabilities in the transition matrixA uniform essentially neglect-
ing the knowledge of location neighborhood relationships. The assigned location
labels for this case are in the right column of Figure 6, with noticeably degraded
recognition performance.

6 Pose Estimation

Once the most likely location and best matched view has been found we can com-
pute the relative displacement between the current view and model view.

The current view and the matched model view are related by a rigid body dis-
placementg = (R, T ) represented by a rotationR ∈ SO(3) and translation
T = [tx, ty, tz]

T ∈ R3. Provided that the camera is calibrated,g can be estimated
from the epipolar geometry between the two views. This recovery problem can
be further simplified taking into account the fact that the motion of the robot is
restricted to a plane. Here we outline an algorithm for this special case and demon-
strate how to recover the displacement in case of unknown focal length. The case of
general motion and unknown focal length was studied by (20) and the solution for
the case of planar motion case has been proposed by (21) in the context of uncali-
brated stereo. Here we demonstrate a slightly different, more concise solution to the
problem. Consider the perspective camera projection model, where 3D coordinates
of pointX = [X, Y, Z]T are related to their image projectionsx = [x, y, 1]T by an
unknown scaleλ; λx = X. In case the camera is calibrated the two views of the
scene are related byλ2x2 = Rλ1x1 + T , where(R, T ) ∈ SE(3) is a rigid body
transformation andλ1 andλ2 are the unknown depths with respect to individual
camera frames. After elimination of the unknown scales from the above equation,
the relationship between the two views is captured by so-called epipolar constraint

xT
2 T̂Rx1 = xT

2 Ex1 = 0, (4)

whereE = T̂R is the essential matrix2 In case of planar motion, assuming trans-
lation inx− z plane and rotation aroundy−axis by an angleθ, the essential matrix

2 T̂ denotes a3× 3 skew symmetric matrix associated with vectorT .



has the following sparse form

E =


0 −tz 0

tzcθ + t1sθ 0 tzsθ − t1cθ

0 tx 0

 (5)

wheresθ(cθ) denotesin θ(cos θ) respectively. Given at least four point correspon-
dences, the elements of the essential matrix[e1, e2, e3, e4]

T can be obtained as
a least squares solution of a system of homogeneous equations of the form (4).
Once the essential matrixE has been recovered, the four different solutions forθ
andT = ±[tx, 0, tz] can be obtained (using basic trigonometry) directly from the
parametrization of the essential matrix (5). The physically correct solution is then
obtained using the positive depth constraint. In the case of unknown focal length
the two views are related by so called fundamental matrixF

x̃T
2 F x̃1 = 0 with x = K−1x̃. (6)

The fundamental matrixF is in this special planar, partially calibrated case related
to the essential matrixE as follows

F = K−T EK−1 with K =


f 0 0

0 f 0

0 0 1

 (7)

wheref is the unknown focal length. The remaining intrinsic parameters are as-
sumed to be known. In the planar motion case the matrixF = [0, f1, 0; f2, 0, f3; 0, f4, 0]
can be recovered from the homogeneous constraints of the form (6) given a min-
imum of four matched points. The extraction of the unknown motion parameters
and the focal lengthf however is not straightforward, since the translation and
the focal length appear in the parametrization of the matrixF in a multiplicative
way. We propose to use additional constraints provided by so-called Kruppa’s equa-
tions (22). It can be easily verified that a fundamental matrixF between the two
views and the unknown intrinsic parameter matrixK satisfy the following con-
straint

FKKT F T = λ2êKKT êT (8)

wheree = KT
‖KT‖ is the epipole andλ is the unknown scale of the fundamen-

tal matrix. In our previous work (22) we have shown that for the special case of
planar motion the above equation is satisfied if and only ifλ = 1. SinceF and
e = [−f1, 0, f4]

T can be estimated, the renormalized equation (8) yields following
useful constraint on intrinsic parametersK

FKKT F T = êKKT êT . (9)



Given the planar motion case, the middle entries of matrices on the left and right
side of equation (9) yield a constraint on the focal length and the entries of the
fundamental matrix

f 2
2 f 2 + f 2

3 = f 2
4 f 2 + f 2

1 .

The solution for the focal length can then be directly obtained from the above equa-
tion as

f =

√√√√f 2
1 − f 2

3

f 2
2 − f 2

4

. (10)

Oncef is computed, the relative displacement between the views can be obtained
by the method outlined for the calibrated case. Additional care has to be taken in
assuring that the detected matches do not come from a degenerate configuration.
We have used RANSAC algorithm for the robust estimation of the pose between
two views, with slightly modified sampling strategy. Figure 7 shows two examples
of relative positioning with respect to two different representative views. The initial
estimate of the motion and focal length is further refined by nonlinear minimization,
where the total reprojection error of all the matched points in minimized

E(R, T, f) = min
n∑

i=1

‖xi − π([KR, KT ]Xi)‖2 + ‖xi
r − π(Xi)‖2, (11)

whereK is partially known matrix of intrinsic parameters,xi andxi
r are the matched

SIFT features between the current view and the most likely reference view andXi

are 3D coordinates of points expressed with respect to the reference view. Note that
3D structure of the scene is estimated as well. The focal length estimates obtained
for these examples aref = 624.33 andf = 545.30. The relative camera pose for
individual views is represented in the figure by a coordinate frame.

7 Conclusions and Future Works

We have demonstrated the suitability and the discrimination capability of the scale-
invariant SIFT features in the context of location recognition and global localization
task. Although the matching and location recognition methods can be accomplished
using an efficient and simple voting scheme, the recognition rate is affected by
dynamic changes in the environment and inherent ambiguities in the appearance of
individual locations. We have shown that these difficulties can be partially resolved
by exploiting the neighborhood relationships between the locations captured by
Hidden Markov Models.

Since the notion of location is not defined precisely and is merely inferred in the
learning stage the presented method enables only qualitative global localization in
terms of individual locations. Following the global localization we compute the
relative pose of the robot with respect to the closest reference view (24) found



Location 1 Location 2

Location 1

Location 2

Fig. 7. Relative positioning experiments with respect to the representative views. Bottom:
Query views along the path between the first view and the representative view for two
different locations. Top: Recovered motions for two locations.

in the matching stage. This enables us to achieve metric localization with respect
to the reference view, which can be followed by relative positioning tasks. More
extensive experiments as well as integration with the exploration and navigation
strategies on-board of mobile robot platform are currently underway.
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