Heaps

- A heap can be seen as a complete binary tree:

What makes a binary tree complete?
Is the example above complete?
Heaps

- In practice, heaps are usually implemented as arrays:

\[A = [16, 14, 10, 8, 7, 9, 3, 2, 4, 1] = \]

Heaps

- To represent a complete binary tree as an array:
 - The root node is \(A[1] \)
 - Node \(i \) is \(A[i] \)
 - The parent of node \(i \) is \(A[i/2] \) (note: integer divide)
 - The left child of node \(i \) is \(A[2i] \)
 - The right child of node \(i \) is \(A[2i+1] \)
Referencing Heap Elements

- So...

 \[
 \text{Parent}(i) \{ \text{return } \lfloor i/2 \rfloor; \}\]

 \[
 \text{Left}(i) \{ \text{return } 2i; \}\]

 \[
 \text{right}(i) \{ \text{return } 2i + 1; \}\]

- An aside: \textit{How would you implement this most efficiently?}

The Heap Property

- Heaps also satisfy the \textit{heap property}:

 \[
 A[\text{Parent}(i)] \geq A[i] \quad \text{for all nodes } i > 1
 \]

- In other words, the value of a node is at most the value of its parent

- \textit{Where is the largest element in a heap stored?}

- Definitions:

 - The \textit{height} of a node in the tree = the number of edges on the longest downward path to a leaf

 - The height of a tree = the height of its root
Heap Height

• What is the height of an n-element heap? Why?

• This is nice: basic heap operations take at most time proportional to the height of the heap

Heap Height

• Heapify
• Build-heap
• Heapsort
Heap Operations: Heapify()

- **Heapify()**: maintain the heap property
 - Given: a node \(i \) in the heap with children \(l \) and \(r \)
 - Given: two subtrees rooted at \(l \) and \(r \), assumed to be heaps
 - Problem: The subtree rooted at \(i \) may violate the heap property \((How?)\)
 - Action: let the value of the parent node “float down” so subtree at \(i \) satisfies the heap property
 ‣ What do you suppose will be the basic operation between \(i, l \), and \(r \)?

```plaintext
Heapify(A, i)
{
  l = Left(i); r = Right(i);
  if (l <= heap_size(A) && A[l] > A[i])
    largest = l;
  else
    largest = i;
  if (r <= heap_size(A) && A[r] > A[largest])
    largest = r;
  if (largest != i)
    Swap(A, i, largest);
  Heapify(A, largest);
}
```

How to maintain heap property.
Suppose property is violated at \(A[i] \)
Heapify(A,2) Example

Assumes that prior to violation of heap property
As node A[2] the array is indeed a heap.

A = [16, 4, 10, 14, 7, 9, 3, 2, 8, 1]
Heapify(A,2) Example

A = [16, 14, 10, 4, 7, 9, 3, 2, 8, 1]
Heapify(A,4) Example

A = 16 14 10 4 7 9 3 2 8 1

Heapify(A,4) Example

A = 16 14 10 8 7 9 3 2 4 1
Heapify(A,4) Example

Heapify(A,9) Example
Analyzing Heapify(): Informal

- Aside from the recursive call, what is the running time of `Heapify()`?
- How many times can `Heapify()` recursively call itself?
- What is the worst-case running time of `Heapify()` on a heap of size n?