Chapter 4
Greedy Algorithms

4.5 Minimum Spanning Tree

Minimum Spanning Tree

Given a connected graph \(G = (V, E) \) with real-valued edge weights \(c_e \), an MST is a subset of the edges \(T \subseteq E \) such that \(T \) is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem. There are \(n^2 \) spanning trees of \(K_n \).

Applications

MST is fundamental problem with diverse applications.
- Network design.
 - telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems.
 - traveling salesperson problem, Steiner tree
- Indirect applications.
 - max bottleneck paths
 - LDPC codes for error correction
 - image registration with Renyi entropy
 - learning salient features for real-time face verification
 - reducing data storage in sequencing amino acids in a protein
 - model locality of particle interactions in turbulent fluid flows
 - autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.
Greedy Algorithms

Kruskal’s algorithm. Start with $T = \emptyset$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with $T = E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim’s algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

Cycles and Cuts

Cycle. Set of edges the form $a-b$, $b-c$, $c-d$, ..., $y-z$, $z-a$.

Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Cut $S = \{4, 5, 8\}$
Cutset $D = \{5-6, 5-7, 3-4, 3-5, 7-8\}$

Cycle $C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1$
Cutset $D = \{3-4, 3-5, 5-6, 5-7, 7-8\}$
Intersection $= \{3-4, 5-6\}$

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)
Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Pf. (exchange argument)
- Suppose e does not belong to T^*, and let's see what happens.
- Adding e to T^* creates a cycle C in T^*.
- Edge e is both in the cycle C and in the cutset D corresponding to S.
- $T^* = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, cost(T^*) = cost(T^*).
- This is a contradiction.

Prim’s Algorithm: Proof of Correctness

Prim’s algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
- Initialize $S = \{$ any node $\}$.
- Apply cut property to S.
- Add min cost edge in cutset corresponding to S to T, and add one new explored node u to S.

Implementation: Prim’s Algorithm

Implementation. Use a priority queue ala Dijkstra.
- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost $a[v] = \text{cost of cheapest edge } v \text{ to a node in } S$.
- $O(n^2)$ with an array; $O(m \log n)$ with a binary heap.

```
Prim(G, c) {
    foreach (v @ V) a[v] <- ¥
    Initialize an empty priority queue Q
    foreach (v @ V) insert v onto Q
    Initialize set of explored nodes $S \leftarrow \emptyset$
    while (Q is not empty) {
        u <- delete min element from Q
        $S \leftarrow S \cup \{u\}$
        foreach (edge $e = (u, v)$ incident to $u$) {
            if ($v \notin S$ and ($c_e < a[v]$))
                decrease priority $a[v]$ to $c_e$
        }
    }
```
Kruskal’s Algorithm: Proof of Correctness

Kruskal’s algorithm. [Kruskal, 1956]

- Consider edges in ascending order of weight.
- Case 1: If adding e to T creates a cycle, discard e according to cycle property.
- Case 2: Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u’s connected component.

Case 1

Case 2

Implementation: Kruskal’s Algorithm

Kruskal(G, c) {
Sort edges weights so that c_1 \leq c_2 \leq ... \leq c_m.
T \leftarrow \emptyset
foreach (u \in V) make a set containing singleton u
for i = 1 to m
 (u,v) = e_i
 if (u and v are in different sets) {
 T \leftarrow T \cup \{e_i\}
 merge the sets containing u and v
 }
return T
}

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise comparisons. If perturbations are sufficiently small, MST with perturbed costs is MST with original costs.

4.7 Clustering

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs
Clustering

Clustering. Given a set U of n objects labeled $p_1, ..., p_n$, classify into coherent groups.

Distance function. Numeric value specifying “closeness” of two objects.

Fundamental problem. Divide into clusters so that points in different clusters are far apart.

- Routing in mobile ad hoc networks.
- Identify patterns in gene expression.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 10^9 sky objects into stars, quasars, galaxies.

Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.

- $d(p_i, p_j) = 0$ iff $p_i = p_j$ (identity of indiscernibles)
- $d(p_i, p_j) > 0$ (nonnegativity)
- $d(p_i, p_j) = d(p_j, p_i)$ (symmetry)

Spacing. Min distance between any pair of points in different clusters.

Clustering of maximum spacing. Given an integer k, find a k-clustering of maximum spacing.

Greedy Clustering Algorithm

Single-link k-clustering algorithm.

- Form a graph on the vertex set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat $n-k$ times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal’s algorithm (except we stop when there are k connected components).

Remark. Equivalent to finding an MST and deleting the $k-1$ most expensive edges.

MST Algorithms: Theory

Deterministic comparison based algorithms.

- $O(m \log n)$ [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
- $O(m \log n)$ [Cheriton-Tarjan 1976, Yao 1975]
- $O(m \log \log n)$ [Fredman-Tarjan 1987]
- $O(m \log (\ell(m, n)))$ [Gabow-Gall-Prime-Tarjan 1986]
- $O(m + (m, n))$ [Chazelle 2000]

Holy grail. $O(m)$.

Notable.

- $O(m)$ randomized. [Karger-Klein-Tarjan 1995]
- $O(m)$ verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.

- 2-d: $O(n \log n)$, compute MST of edges in Delaunay
- k-d: $O(k n^2)$, dense Prim
Huffam Coding (see textbook)

- Fixed length coding
 - Fixed length codes
 - Prefix codes
 - Compression factor
 - Prefix codes as binary tree
 - Algorithm for the design of optimal prefix code