Chapter 10, 11, 12
Extending the Limits of Tractability

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you’re unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that arise in practice.

10.1 Finding Small Vertex Covers

Vertex Cover

VERTEX COVER: Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$, or $v \in S$, or both.

$$k = 4$$
$$S = \{3, 6, 7, 10\}$$
Finding Small Vertex Covers

Q. What if k is small?

Brute force. $O(kn^{k+1})$.
- Try all $C(n, k) = O(n^k)$ subsets of size k.
- Takes $O(kn)$ time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to $O(2^k kn)$.

Ex. $n = 1,000, k = 10$.
- Brute. $k \cdot n^{k+1} = 10^{11} \Rightarrow$ infeasible.
- Better. $2^k \cdot n = 10^7 \Rightarrow$ feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a small constant, then it’s also practical.

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O(2^k kn)$ time.

```java
boolean Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains $\geq kn$ edges) return false
    let (u, v) be any edge of G
    a = Vertex-Cover(G - {u}, k-1)
    b = Vertex-Cover(G - {v}, k-1)
    return a or b
}
```

Pf.
- Correctness follows previous two claims.
- There are $\leq 2^{k-1}$ nodes in the recursion tree; each invocation takes $O(kn)$ time.

Finding Small Vertex Covers: Recursion Tree

$$T(n, k) = \begin{cases}
 cn & \text{if } k = 1 \\
 \frac{cn}{2T(n, k-1) + ckn} & \text{if } k > 1
\end{cases} \Rightarrow T(n, k) \leq 2^k cn$$
10.2 Solving NP-Hard Problems on Trees

Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

Key observation. If v is a leaf, there exists a maximum size independent set containing v.

Pf. (exchange argument)
- Consider a max cardinality independent set S.
- If v \in S, we’re done.
- If u \notin S and v \notin S, then S \cup \{v\} is independent \Rightarrow S not maximum.
- IF u \in S and v \notin S, then S \cup \{v\} \setminus \{u\} is independent.

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```
Independent-Set-In-A-Forest(F) {
  S ← ∅
  while (F has at least one edge) {
    Let e = (u, v) be an edge such that v is a leaf
    Add v to S
    Delete from F nodes u and v, and all edges incident to them.
  }
  return S
}
```

Pf. Correctness follows from the previous key observation.

Remark. Can implement in O(n) time by considering nodes in postorder.

Weighted Independent Set on Trees

Weighted independent set on trees. Given a tree and node weights w_v > 0, find an independent set S that maximizes \(\sum_{v \in S} w_v \).

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.
- \(OPT_{in}(u) = \text{max weight independent set rooted at } u, \text{ containing } u \)
- \(OPT_{out}(u) = \text{max weight independent set rooted at } u, \text{ not containing } u \)

\[
OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)
\]
\[
OPT_{out}(u) = \max_{v \in \text{children}(u)} \{ OPT_{in}(v), OPT_{out}(v) \}
\]

children(u) = \{ v, w, x \}
Independent Set on Trees: Greedy Algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in trees in O(n) time.

```
Weighted-Independent-Set-In-A-Tree(T) {
  Root the tree at a node r
  foreach (node u of T in postorder) {
    if (u is a leaf) {
      Min[u] = w_u
      Max[u] = 0
    } else {
      Min[u] = Σ [v ∈ children(u)] Max[v] + w_u
      Max[u] = Σ [v ∈ children(u)] max(Max[v], Min[v])
    }
  }
  return max(Min[r], Max[r])
}
```

Pf. Takes O(n) time since we visit nodes in postorder and examine each edge exactly once.

Context

Independent set on trees. This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

Graphs of bounded tree width. Elegant generalization of trees that:
- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you’re unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

ρ-approximation algorithm.
- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem.
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution’s value is close to optimum, without even knowing what optimum value is!
11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs, job j has processing time t_j.
- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let $J(i)$ be the subset of jobs assigned to machine i. The **load** of machine i is $L_i = \sum_{j \in J(i)} t_j$.

Def. The **makespan** is the maximum load on any machine $L = \max_i L_i$.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.
- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

```
List-Scheduling(m, n, t_1, t_2, ..., t_n) {
    for i = 1 to m {
        L_i = 0  // load on machine i
        J(i) = ∅  // jobs assigned to machine i
    }
    for j = 1 to n {
        i = argmin_k L_k  // machine i has smallest load
        J(i) = J(i) ∪ {j}  // assign job j to machine i
        L_i = L_i + t_j  // update load of machine i
    }
}
```

Implementation. $O(n \log n)$ using a priority queue.

Load Balancing: List Scheduling Analysis

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L^*.

Lemma 1. The optimal makespan $L^* = \max_j t_j$.
Pf. Some machine must process the most time-consuming job.

Lemma 2. The optimal makespan $L^* = \frac{1}{m} \sum_j t_j$.
Pf.
- The total processing time is $\sum_j t_j$.
- One of m machines must do at least a $1/m$ fraction of total work.
Theorem. Greedy algorithm is a 2-approximation.

Proof. Consider load L_i of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i - t_j \Rightarrow L_i - t_j \leq L_k$ for all $1 \leq k \leq m$.

Sum inequalities over all k and divide by m:

$$L_i - t_j \leq \frac{1}{m} \sum_{k \in C_i} t_k \leq L^*$$

Now

$$L_i = (L_i - t_j) + t_j \leq 2L^*.$$
Gradient Descent: Vertex Cover

VERTEX-COVER. Given a graph $G = (V, E)$, find a subset of nodes S of minimal cardinality such that for each $u-v$ in E, either u or v (or both) are in S.

Neighbor relation. $S \sim S'$ if S' can be obtained from S by adding or deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with $S = V$. If there is a neighbor S' that is a vertex cover and has lower cardinality, replace S with S'.

Remark. Algorithm terminates after at most n steps since each update decreases the size of the cover by one.

Local Search

Local search. Algorithm that explores the space of possible solutions in sequential fashion, moving from a current solution to a "nearby" one.

Neighbor relation. Let $S \sim S'$ be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor S' of S with strictly lower cost, replace S with the neighbor whose cost is as small as possible. Otherwise, terminate the algorithm.

12.2 Metropolis Algorithm
Metropolis Algorithm

Metropolis algorithm. [Metropolis, Rosenbluth, Rosenbluth, Teller, Teller 1953]
- Simulate behavior of a physical system according to principles of statistical mechanics.
- Globally biased toward "downhill" steps, but occasionally makes "uphill" steps to break out of local minima.

Gibbs-Boltzmann function. The probability of finding a physical system in a state with energy E is proportional to \(e^{-E/(kT)} \), where \(T > 0 \) is temperature and \(k \) is a constant.
- For any temperature \(T > 0 \), function is monotone decreasing function of energy E.
- System more likely to be in a lower energy state than higher one.
 - \(T \) large: high and low energy states have roughly same probability
 - \(T \) small: low energy states are much more probable

Simulated Annealing

Simulated annealing.
- \(T \) large \(\Rightarrow \) probability of accepting an uphill move is large.
- \(T \) small \(\Rightarrow \) uphill moves are almost never accepted.
- Idea: turn knob to control \(T \).
- Cooling schedule: \(T = T(i) \) at iteration \(i \).

Physical analog.
- Take solid and raise it to high temperature, we do not expect it to maintain a nice crystal structure.
- Take a molten solid and freeze it very abruptly, we do not expect to get a perfect crystal either.
- Annealing: cool material gradually from high temperature, allowing it to reach equilibrium at succession of intermediate lower temperatures.

12.3 Hopfield Neural Networks
Hopfield Neural Networks

Hopfield networks. Simple model of an associative memory, in which a large collection of units are connected by an underlying network, and neighboring units try to correlate their states.

Input: Graph \(G = (V, E) \) with integer edge weights \(w \).

Configuration. Node assignment \(s_u = \pm 1 \).

Intuition. If \(w_{uv} < 0 \), then \(u \) and \(v \) want to have the same state; if \(w_{uv} > 0 \) then \(u \) and \(v \) want different states.

Note. In general, no configuration respects all constraints.

Def. With respect to a configuration \(S \), edge \(e = (u, v) \) is **good** if \(w_{uv} s_u s_v < 0 \). That is, if \(w_{uv} < 0 \) then \(s_u = s_v \); if \(w_{uv} > 0 \), \(s_u \neq s_v \).

Def. With respect to a configuration \(S \), a node \(u \) is **satisfied** if the weight of incident good edges \(\geq \) weight of incident bad edges.

\[\sum_{(e \in E) \cap \{u\}} w_{uv} s_u s_v \geq 0 \]

Def. A configuration is **stable** if all nodes are satisfied.

Goal. Find a stable configuration, if such a configuration exists.

State Flipping Algorithm

Goal. Find a stable configuration, if such a configuration exists.

State-flipping algorithm. Repeatedly flip state of an unsatisfied node.

```plaintext
Hopfield-Flip(G, w) {
    S ← arbitrary configuration
    while (current configuration is not stable) {
        u ← unsatisfied node
        s_u = -s_u
    }
    return S
}
```

Hopfield Neural Networks

Unsatisfied node: \(-10 - 8 \geq 0\)

Satisfied node: \(-4 - 4 - 4 \leq 0\)

Stable configuration.
12 Local Search Methods

Hopfield Neural Networks

Claim. State-flipping algorithm terminates with a stable configuration after at most $W = \sum_{e} |w_e|$ iterations.

Pf attempt. Consider measure of progress $\Phi(S) = \#$ satisfied nodes.

$\Phi(S) = \sum_{e \in E} |W_e|$

- Clearly $0 \leq \Phi(S) \leq W$.
- We show $\Phi(S)$ increases by at least 1 after each flip.
 When u flips state:
 - all good edges incident to u become bad
 - all bad edges incident to u become good
 - all other edges remain the same

$\Phi(S') - \Phi(S) = \sum_{e \in E} I(w_e) + \sum_{e \in E} I(w_e) > \Phi(S) + 1$

- if u is satisfied
- if u is unsatisfied

Complexity of Hopfield Neural Network

Hopfield network search problem. Given a weighted graph, find a stable configuration if one exists.

Hopfield network decision problem. Given a weighted graph, does there exist a stable configuration?

Remark. The decision problem is trivially solvable (always yes), but there is no known poly-time algorithm for the search problem.

$\Omega(n \log W)$