Chapter 11
Approximation Algorithms
Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

ρ-approximation algorithm.
- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!
11.1 Load Balancing
LoadBalancing

Input. \(m \) identical machines; \(n \) jobs, job \(j \) has processing time \(t_j \).
- Job \(j \) must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let \(J(i) \) be the subset of jobs assigned to machine \(i \). The **load** of machine \(i \) is \(L_i = \sum_{j \in J(i)} t_j \).

Def. The **makespan** is the maximum load on any machine \(L = \max_i L_i \).

Load balancing. Assign each job to a machine to minimize makespan.
List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

```
List-Scheduling(m, n, t_1, t_2, ..., t_n) {
    for i = 1 to m {
        L_i ← 0 ← load on machine i
        J(i) ← ∅ ← jobs assigned to machine i
    }

    for j = 1 to n {
        i = argmin_k L_k ← machine i has smallest load
        J(i) ← J(i) ∪ \{j\} ← assign job j to machine i
        L_i ← L_i + t_j ← update load of machine i
    }
}
```

Implementation. $O(n \log n)$ using a priority queue.
Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L^*.

Lemma 1. The optimal makespan $L^* \geq \max_j t_j$.

Pf. Some machine must process the most time-consuming job. ·

Lemma 2. The optimal makespan $L^* \geq \frac{1}{m} \sum_j t_j$.

Pf.
- The total processing time is $\sum_j t_j$.
- One of m machines must do at least a $1/m$ fraction of total work. ·
Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L_i of bottleneck machine i.
- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i - t_j \Rightarrow L_i - t_j \leq L_k$ for all $1 \leq k \leq m$.

```plaintext
blue jobs scheduled before j
```

```plaintext
machine i
```

```plaintext
0 \quad L_i - t_j \quad L = L_i
```
Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L_i of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i - t_j \Rightarrow L_i - t_j \leq L_k$ for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m:

\[
L_i - t_j \leq \frac{1}{m} \sum_k L_k = \frac{1}{m} \sum_k t_k \leq L^* \]

- Now \(L_i = (L_i - t_j) + t_j \leq 2L^* \).

\[\text{Lemma 2} \]
Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, $m(m-1)$ jobs length 1 jobs, one job of length m

$m = 10$

<table>
<thead>
<tr>
<th></th>
<th>machine 2 idle</th>
<th>machine 3 idle</th>
<th>machine 4 idle</th>
<th>machine 5 idle</th>
<th>machine 6 idle</th>
<th>machine 7 idle</th>
<th>machine 8 idle</th>
<th>machine 9 idle</th>
<th>machine 10 idle</th>
</tr>
</thead>
</table>

list scheduling makespan = 19
Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

\[m = 10 \]

optimal makespan = 10
Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t_1, t_2, ..., t_n) {
 Sort jobs so that t_1 ≥ t_2 ≥ ... ≥ t_n

 for i = 1 to m {
 L_i ← 0 ← load on machine i
 J(i) ← ∅ ← jobs assigned to machine i
 }

 for j = 1 to n {
 i = argmin_k L_k ← machine i has smallest load
 J(i) ← J(i) ∪ {j} ← assign job j to machine i
 L_i ← L_i + t_j ← update load of machine i
 }
}
Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.

Pf. Each job put on its own machine. ·

Lemma 3. If there are more than m jobs, \(L^* \geq 2t_{m+1} \).

Pf.
- Consider first \(m+1 \) jobs \(t_1, \ldots, t_{m+1} \).
- Since the \(t_i \)'s are in descending order, each takes at least \(t_{m+1} \) time.
- There are \(m+1 \) jobs and \(m \) machines, so by pigeonhole principle, at least one machine gets two jobs. ·

Theorem. LPT rule is a \(3/2 \) approximation algorithm.

Pf. Same basic approach as for list scheduling.

\[
L_i = \underbrace{(L_i - t_j)}_{\leq L^*} + \underbrace{t_j}_{\leq \frac{1}{2}L^*} \leq \frac{3}{2}L^*. ·
\]

(by observation, can assume number of jobs > m)
11.2 Center Selection
Input. Set of n sites s_1, \ldots, s_n.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.
Center Selection Problem

Input. Set of n sites s_1, \ldots, s_n.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.
- $\text{dist}(x, y) =$ distance between x and y.
- $\text{dist}(s_i, C) = \min_{c \in C} \text{dist}(s_i, c) =$ distance from s_i to closest center.
- $r(C) = \max_i \text{dist}(s_i, C) =$ smallest covering radius.

Goal. Find set of centers C that minimizes $r(C)$, subject to $|C| = k$.

Distance function properties.
- $\text{dist}(x, x) = 0$ (identity)
- $\text{dist}(x, y) = \text{dist}(y, x)$ (symmetry)
- $\text{dist}(x, y) \leq \text{dist}(x, z) + \text{dist}(z, y)$ (triangle inequality)
Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the plane, $$\text{dist}(x, y) = \text{Euclidean distance}.$$

Remark: search can be infinite!
Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!
Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s_1, s_2, ..., s_n) {
    C = ∅
    repeat k times {
        Select a site s_i with maximum dist(s_i, C)
        Add s_i to C
    }
    return C
}
```

Observation. Upon termination all centers in C are pairwise at least r(C) apart.

Pf. By construction of algorithm.
Theorem. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$.

Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2} r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2} r(C)$ around it.
- Exactly one c_i^* in each ball; let c_i be the site paired with c_i^*.
- Consider any site s and its closest center c_i^* in C^*.
- $\operatorname{dist}(s, C) \leq \operatorname{dist}(s, c_i) \leq \operatorname{dist}(s, c_i^*) + \operatorname{dist}(c_i^*, c_i) \leq 2r(C^*)$.
- Thus $r(C) \leq 2r(C^*)$. Δ-inequality $\leq r(C^*)$ since c_i^* is closest center.
11.4 The Pricing Method: Vertex Cover
Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

```
vertex 1: 2 2 4
vertex 2: 2 9

weight = 2 + 2 + 4

vertex 1: 2 4
vertex 2: 2 9

weight = 9
```
Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_e \geq 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

For each vertex i:

$$\sum_{e=(i,j)} p_e \leq w_i$$

Claim. For any vertex cover S and any fair prices p_e: $\sum_e p_e \leq w(S)$.

Proof.

$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$

- each edge e covered by at least one node in S
- sum fairness inequalities for each node in S
Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {
 foreach e in E
 \[p_e = 0 \]
 \[\sum_{e=(i,j)} p_e = w_i \]

 while (\exists \text{edge } i-j \text{ such that neither } i \text{ nor } j \text{ are tight})
 select such an edge e
 increase \[p_e \] without violating fairness

 S \leftarrow \text{set of all tight nodes}
 return S
}
Pricing Method

Figure 11.8

(a)

(b)

(c)

(d)
Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.

Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.

- Let $S =$ set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.

- Let S^* be optimal vertex cover. We show $w(S) \leq 2w(S^*)$.

\[
 w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*). \]

\[\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \]

all nodes in S are tight \hspace{1cm} \hspace{1cm} \hspace{1cm} S \subseteq V, \hspace{1cm} \text{prices } \geq 0 \hspace{1cm} \text{each edge counted twice} \hspace{1cm} \text{fairness lemma}