Longest Common Subsequence

- *Longest common subsequence (LCS)* problem:

- Given two sequences $x[1..m]$ and $y[1..n]$, find the longest subsequence which occurs in both
- Ex: $x = \{A B C B D A B\}$, $y = \{B D C A B A\}$
 - $\{B C\}$ and $\{A A\}$ are both subsequences of both

What is the LCS?

- Brute-force algorithm: For every subsequence of x, check if it’s a subsequence of y

 - How many subsequences of x are there?
 - What will be the running time of the brute-force alg?

LCS Algorithm

- Brute-force algorithm: 2^m subsequences of x to check against n elements of y: $O(n \times 2^m)$
- We can do better: for now, let’s only worry about the problem of finding the *length* of LCS
- When finished we will see how to backtrack from this solution back to the actual LCS
- Notice LCS problem has optimal substructure
- Subproblems: LCS of pairs of *prefixes* of x and $y
LCS recursive solution

\[c[i, j] = \begin{cases}
 c[i - 1, j - 1] + 1 & \text{if } x[i] = y[j], \\
 \max(c[i, j - 1], c[i - 1, j]) & \text{otherwise}
\end{cases} \]

- We start with \(i = j = 0 \) (empty substrings of \(x \) and \(y \))
- Since \(X_0 \) and \(Y_0 \) are empty strings, their LCS is always empty (i.e. \(c[0,0] = 0 \))
- LCS of empty string and any other string is empty, so for every \(i \) and \(j \): \(c[0, j] = c[i, 0] = 0 \)

LCS Example (2)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if \((X_i == Y_j) \)

\[c[i, j] = c[i-1, j-1] + 1 \]

else \(c[i, j] = \max(c[i-1, j], c[i, j-1]) \)
LCS Example (15)

\[
\begin{array}{cccccc}
 & 0 & 1 & 2 & 3 & 4 & 5 \\
 0 & B & D & C & A & B & X_j \\
 1 & A & & & & & \\
 2 & B & & & & & \\
 3 & C & & & & & \\
 4 & B & & & & & \\
\end{array}
\]

\[
\begin{array}{cccccc}
 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & & & & & & \\
 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
 2 & 0 & 1 & 1 & 1 & 2 & 2 \\
 3 & 0 & 1 & 1 & 2 & 2 & 2 \\
 4 & 0 & 1 & 1 & 2 & 2 & 3 \\
\end{array}
\]

if (\(X_i == Y_j\))
\[
c[i,j] = c[i-1,j-1] + 1
\]

else \(c[i,j] = \max(c[i-1,j], c[i,j-1])\)

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array \(c[m,n]\)
- So what is the running time?

\(O(m.n)\)

since each \(c[i,j]\) is calculated in constant time, and there are \(m.n\) elements in the array
Finding LCS (2)

LCS (reversed order):

LCS (straight order):

Optimal Substructure of LCS

\[c[i, j] = \begin{cases}
 c[i - 1, j - 1] + 1 & \text{if } x[i] = y[j], \\
 \max(c[i, j - 1], c[i - 1, j]) & \text{otherwise}
\end{cases} \]

- Observation 1: Optimal substructure
 A simple recursive algorithm will suffice
 Draw sample recursion tree from c[3,4]
 What will be the depth of the tree?

- Observation 2: Overlapping subproblems

Find some places where we solve the same subproblem more than once