Chapter 1 and 2

1. (3) Show using definition of \(\Theta \) that \(\frac{1}{2}n^2 - 5n = \Theta(n^2) \)

2. (5) For the following pair of functions indicate whether \(f(n) \) is \(O, \Omega, \Theta \) of \(g(n) \):

\[
\begin{align*}
n^k, c^n \\
2^n, 2^{n/2} \\
n^2, n \log^2 n
\end{align*}
\]

3. (4) Chapter 1, Problem 1, Problem 2

4. (5) Chapter 2, Problem 1 c, d

5. (5) Chapter 2, Problem 2 c, e

6. (5) Consider sorting \(n \) numbers stored in an array \(A \) by first selecting the smallest element and exchanging it with \(A[1] \). The finding a second smallest element and exchanging it with \(A[2] \), an continue for the first (\(n-1 \)) elements in the array. Write pseudocode for this algorithm and give the best case and worst-case running time.

Practice Problems (not for grade)

1. Chapter 1, Problem 4

2. Chapter 2, Problem 3