Final Exam Review
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)
Dynamic Programming: Binary Choice

Notation. \(OPT(j) = \text{value of optimal solution to the problem consisting of job requests 1, 2, ..., j}. \)

- **Case 1:** \(OPT \) selects job \(j \).
 - can't use incompatible jobs \(\{ p(j) + 1, p(j) + 2, ..., j - 1 \} \)
 - must include optimal solution to problem consisting of remaining compatible jobs \(1, 2, ..., p(j) \)

- **Case 2:** \(OPT \) does not select job \(j \).
 - must include optimal solution to problem consisting of remaining compatible jobs \(1, 2, ..., j-1 \)

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ v_j + OPT(p(j)), \, OPT(j-1) \} & \text{otherwise}
\end{cases}
\]
Observation. Recursive algorithm fails spectacularly because of redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[p(1) = 0, \ p(j) = j-2 \]
6.3 Segmented Least Squares
Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\).
- Find a line \(y = ax + b\) that minimizes the sum of the squared error:

\[
SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2
\]

Solution. Calculus \(\Rightarrow\) min error is achieved when

\[
a = \frac{n \sum_i x_i y_i - (\sum_i x_i)(\sum_i y_i)}{n \sum_i x_i^2 - (\sum_i x_i)^2}, \quad b = \frac{\sum_i y_i - a \sum_i x_i}{n}
\]
Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_1 < x_2 < \ldots < x_n$, find a sequence of lines that minimizes $f(x)$.

Q. What's a reasonable choice for $f(x)$ to balance accuracy and parsimony?
Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_1 < x_2 < \ldots < x_n$, find a sequence of lines that minimizes:
 - the sum of the sums of the squared errors E in each segment
 - the number of lines L
- Tradeoff function: $E + cL$, for some constant $c > 0$.

![Graph showing data points and fitted line segments.](image-url)
Dynamic Programming: Multiway Choice

Notation.

- \(\text{OPT}(j) = \) minimum cost for points \(p_1, p_{i+1}, \ldots, p_j. \)
- \(e(i, j) = \) minimum sum of squares for points \(p_i, p_{i+1}, \ldots, p_j. \)

To compute \(\text{OPT}(j) \):

- Last segment uses points \(p_i, p_{i+1}, \ldots, p_j \) for some \(i. \)
- Cost = \(e(i, j) + c + \text{OPT}(i-1). \)

\[
\text{OPT}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\min_{1 \leq i \leq j} \left\{ e(i,j) + c + \text{OPT}(i-1) \right\} & \text{otherwise}
\end{cases}
\]
6.4 Knapsack Problem
Knapsack Problem

Knapsack problem.
- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: \{ 3, 4 \} has value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

$W = 11$

Greedy: repeatedly add item with maximum ratio v_i / w_i.
Ex: \{ 5, 2, 1 \} achieves only value = 35 \Rightarrow greedy not optimal.
Dynamic Programming: Adding a New Variable

Def. $OPT(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w.$

- **Case 1:** OPT does not select item i.
 - OPT selects best of $\{ 1, 2, \ldots, i-1 \}$ using weight limit w

- **Case 2:** OPT selects item i.
 - new weight limit $= w - w_i$
 - OPT selects best of $\{ 1, 2, \ldots, i-1 \}$ using this new weight limit

\[
OPT(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
OPT(i-1, w) & \text{if } w_i > w \\
\max\{ OPT(i-1, w), \; v_i + OPT(i-1, w-w_i) \} & \text{otherwise}
\end{cases}
\]
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

OPT: \{ 4, 3 \}
value = 22 + 18 = 40

W + 1

\(W = 11 \)
Dynamic Programming Summary

Recipe.
- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.
- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares.
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.
String Similarity

How similar are two strings?

- occurance
- occurrence

- occurance
- occurrence

5 mismatches, 1 gap

- occ - ur r a nce
- occurrence

1 mismatch, 1 gap

- occ - ur r a nce
- occurrence

0 mismatches, 3 gaps
Applications.
- Basis for Unix diff.
- Speech recognition.
- Computational biology.

- Gap penalty δ; mismatch penalty α_{pq}.
- Cost = sum of gap and mismatch penalties.

$$\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA}$$

$$2\delta + \alpha_{CA}$$
Sequence Alignment

Goal: Given two strings $X = x_1 x_2 \ldots x_m$ and $Y = y_1 y_2 \ldots y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i-y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i-y_j and x_i'-y_j' cross if $i < i'$, but $j > j'$.

\[
\text{cost}(M) = \sum_{(x_i, y_j) \in M} \alpha \, x_i y_j + \sum_{i : x_i \text{ unmatched}} \delta_i + \sum_{j : y_j \text{ unmatched}} \delta_j
\]

Ex: CTACCG vs. TACATG.

Sol: $M = x_2$-y_1, x_3-y_2, x_4-y_3, x_5-y_4, x_6-y_6.
Sequence Alignment: Problem Structure

Def. $OPT(i, j) = \text{min cost of aligning strings } x_1 x_2 \ldots x_i \text{ and } y_1 y_2 \ldots y_j.$

- **Case 1:** OPT matches x_i-y_j.
 - pay mismatch for x_i-y_j + min cost of aligning two strings $x_1 x_2 \ldots x_{i-1}$ and $y_1 y_2 \ldots y_{j-1}$
- **Case 2a:** OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \ldots x_{i-1}$ and $y_1 y_2 \ldots y_j$
- **Case 2b:** OPT leaves y_j unmatched.
 - pay gap for y_j and min cost of aligning $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_{j-1}$

$$OPT(i, j) = \begin{cases}
 j\delta & \text{if } i = 0 \\
 \min \{ \alpha_{x_i y_j} + OPT(i-1, j-1), \delta + OPT(i-1, j), \delta + OPT(i, j-1) \} & \text{otherwise} \\
 i\delta & \text{if } j = 0
\end{cases}$$
Sequence Alignment: Linear Space

Divide: find index q that minimizes $f(q, n/2) + g(q, n/2)$ using DP.
- Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.
Shortest Paths

Shortest path problem. Given a directed graph $G = (V, E)$, with edge weights c_{vw}, find shortest path from node s to node t.

Ex. Nodes represent agents in a financial setting and c_{vw} is cost of transaction in which we buy from agent v and sell immediately to w.

![Graph Diagram]
Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.
Shortest Paths: Dynamic Programming

Def. $OPT(i, v) = \text{length of shortest } v \rightarrow t \text{ path } P \text{ using at most } i \text{ edges.}$

- **Case 1:** P uses at most $i-1$ edges.
 - $OPT(i, v) = OPT(i-1, v)$

- **Case 2:** P uses exactly i edges.
 - if (v, w) is first edge, then OPT uses (v, w), and then selects best $w \rightarrow t$ path using at most $i-1$ edges

$$OPT(i, v) = \begin{cases}
0 & \text{if } i = 0 \\
\min \left\{OPT(i-1, v), \min_{(v,w) \in E} \left\{ OPT(i-1, w) + c_{vw} \right\} \right\} & \text{otherwise}
\end{cases}$$

Remark. By previous observation, if no negative cycles, then $OPT(n-1, v) = \text{length of shortest } v \rightarrow t \text{ path.}$
Shortest Paths: Implementation

\[
\text{Shortest-Path}(G, t) \{ \\
\quad \text{foreach node } v \in V \\
\quad \quad M[0, v] \leftarrow \infty \\
\quad \quad M[0, t] \leftarrow 0 \\
\quad \text{for } i = 1 \text{ to } n-1 \\
\quad \quad \text{foreach node } v \in V \\
\quad \quad \quad M[i, v] \leftarrow M[i-1, v] \\
\quad \quad \text{foreach edge } (v, w) \in E \\
\quad \quad \quad M[i, v] \leftarrow \min \{ M[i, v], M[i-1, w] + c_{vw} \} \\
\}\]

Analysis. \(\Theta(mn)\) time, \(\Theta(n^2)\) space.

Finding the shortest paths. Maintain a "successor" for each table entry.
Network Flow
Flow network.

- Abstraction for material **flowing** through the edges.
- \(G = (V, E) \) = directed graph, no parallel edges.
- Two distinguished nodes: \(s = \text{source}, t = \text{sink} \).
- \(c(e) \) = capacity of edge \(e \).

Minimum Cut Problem
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$
Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq \text{cap}(A, B)$.

Pf.

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \leq \sum_{e \text{ out of } A} f(e) \leq \sum_{e \text{ out of } A} c(e) = \text{cap}(A, B).
\]
Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If $v(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

\[
\begin{align*}
\text{Value of flow} &= 28 \\
\text{Cut capacity} &= 28 \implies \text{Flow value} \leq 28
\end{align*}
\]
Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:

(i) There exists a cut (A, B) such that $v(f) = \text{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) \Rightarrow (ii) This was the corollary to weak duality lemma.

(ii) \Rightarrow (iii) We show contrapositive.

- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.
Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of A, $s \in A$.
- By definition of f, $t \not\in A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e)$$

$$= \text{cap}(A, B)$$
Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacities $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $\nu(f^*) \leq nC$ iterations.
Pf. Each augmentation increase value by at least 1. ·

Corollary. If $C = 1$, Ford-Fulkerson runs in $O(m)$ time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. ·
Bipartite Matching

Max flow formulation.
- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.
Disjoint path problem. Given a digraph $G = (V, E)$ and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
Network Connectivity

Network connectivity. Given a digraph $G = (V, E)$ and two nodes s and t, find min number of edges whose removal disconnects t from s.

Def. A set of edges $F \subseteq E$ disconnects t from s if all s-t paths uses at least on edge in F.
Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≥
- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut \Rightarrow cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- $|F| = k$ and disconnects t from s. ·
NP and Computational Intractability
Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If \(X \leq_p Y \) and \(Y \) can be solved in polynomial-time, then \(X \) can also be solved in polynomial time.

Establish intractability. If \(X \leq_p Y \) and \(X \) cannot be solved in polynomial-time, then \(Y \) cannot be solved in polynomial time.

Establish equivalence. If \(X \leq_p Y \) and \(Y \leq_p X \), we use notation \(X \equiv_p Y \).

\[\uparrow \]
up to cost of reduction
Claim. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET}. \)

Pf. We show \(S \) is an independent set iff \(V - S \) is a vertex cover.
Claim. VERTEX-COVER \equiv_P INDEPENDENT-SET.
Pf. We show S is an independent set iff $V - S$ is a vertex cover.

\Rightarrow
- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S independent $\Rightarrow u \notin S$ or $v \notin S$ $\Rightarrow u \in V - S$ or $v \in V - S$.
- Thus, $V - S$ covers (u, v).

\Leftarrow
- Let $V - S$ be any vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since $V - S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge $\Rightarrow S$ independent set.
Set Cover

SET COVER: Given a set U of elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The ith piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

Ex:

<table>
<thead>
<tr>
<th>U = ${1, 2, 3, 4, 5, 6, 7}$</th>
<th>k = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1 = {3, 7}$</td>
<td>$S_4 = {2, 4}$</td>
</tr>
<tr>
<td>$S_2 = {3, 4, 5, 6}$</td>
<td>$S_5 = {5}$</td>
</tr>
<tr>
<td>$S_3 = {1}$</td>
<td>$S_6 = {1, 2, 6, 7}$</td>
</tr>
</tbody>
</table>
Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER \leq_p SET-COVER.

Pf. Given a VERTEX-COVER instance $G = (V, E)$, k, we construct a set cover instance whose size equals the size of the vertex cover instance.

Construction.
- Create SET-COVER instance:
 - $k = k$, $U = E$, $S_v = \{e \in E : e$ incident to $v\}$
- Set-cover of size $\leq k$ iff vertex cover of size $\leq k$.

Example Diagram

VERTEX COVER

- Vertices: a, b, c, e, d, f
- Edges: $e_1, e_2, e_3, e_4, e_5, e_6, e_7$
- $k = 2$

SET COVER

- $U = \{1, 2, 3, 4, 5, 6, 7\}$
- $k = 2$
- $S_a = \{3, 7\}$
- $S_b = \{2, 4\}$
- $S_c = \{3, 4, 5, 6\}$
- $S_d = \{5\}$
- $S_e = \{1\}$
- $S_f = \{1, 2, 6, 7\}$
Satisfiability

Literal: A Boolean variable or its negation. \(x_i \) or \(\overline{x}_i \)

Clause: A disjunction of literals. \(C_j = x_1 \lor \overline{x}_2 \lor x_3 \)

Conjunctive normal form: A propositional formula \(\Phi \) that is the conjunction of clauses. \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

SAT: Given CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals. Each corresponds to a different variable

Ex: \((\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (x_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)\)

Yes: \(x_1 = \text{true}, x_2 = \text{true} x_3 = \text{false} \).
Claim. 3-SAT ≤ₚ INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.
- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

\[
\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)
\]
Review

Basic reduction strategies.

- Simple equivalence: $\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER}$.
- Special case to general case: $\text{VERTEX-COVER} \leq_p \text{SET-COVER}$.
- Encoding with gadgets: $3\text{-SAT} \leq_p \text{INDEPENDENT-SET}$.

Transitivity. If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$.

Pf idea. Compose the two algorithms.

Ex: $3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER}$.
Decision Problems

Decision problem.
- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem X: $A(s) = \text{yes}$ iff $s \in X$.

Polynomial time. Algorithm A runs in poly-time if for every string s, $A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial.

Def. Algorithm $C(s, t)$ is a certifier for problem X if for every string s, $s \in X$ iff there exists a string t such that $C(s, t) = \text{yes}$.

NP. Decision problems for which there exists a poly-time certifier.
Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Ex.

\[
(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x}_1 \lor \overline{x}_3 \lor \overline{x}_4)
\]

instance s

\[
\begin{align*}
x_1 &= 1, & x_2 &= 1, & x_3 &= 0, & x_4 &= 1
\end{align*}
\]

certificate t

Conclusion. SAT is in NP.
P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.

NP. Decision problems for which there is a poly-time certifier.

Claim. **P ⊆ NP.**

Pf. Consider any problem X in **P.**
- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate: $t = \varepsilon$, certifier $C(s, t) = A(s)$. ·

Claim. **NP ⊆ EXP.**

Pf. Consider any problem X in **NP.**
- By definition, there exists a poly-time certifier $C(s, t)$ for X.
- To solve input s, run $C(s, t)$ on all strings t with $|t| \leq p(|s|)$.
- Return yes, if $C(s, t)$ returns yes for any of these. ·
The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
- Is the decision problem as easy as the certification problem?
- Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on P = NP? Probably no.

If P ≠ NP

If P = NP

would break RSA cryptography
(and potentially collapse economy)
NP-Complete

NP-complete. A problem Y in NP with the property that for every problem X in NP, $X \leq_p Y$.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff $P = NP$.

Pf. \Leftarrow If $P = NP$ then Y can be solved in poly-time since Y is in NP.

Pf. \Rightarrow Suppose Y can be solved in poly-time.

- Let X be any problem in NP. Since $X \leq_p Y$, we can solve X in poly-time. This implies $NP \subseteq P$.
- We already know $P \subseteq NP$. Thus $P = NP$. •

Fundamental question. Do there exist "natural" NP-complete problems?
Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?

yes: 1 0 1
Example

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.

Graph $G = (V, E)$, $n = 3$
Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_P Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_P Y$ then Y is NP-complete.

Pf. Let W be any problem in NP. Then $W \leq_P X \leq_P Y$.

- By transitivity, $W \leq_P Y$.
- Hence Y is NP-complete. ◦
Theorem. 3-SAT is NP-complete.

Pf. Suffices to show that CIRCUIT-SAT \leq_p 3-SAT since 3-SAT is in NP.

- Let K be any circuit.
- Create a 3-SAT variable x_i for each circuit element i.
- Make circuit compute correct values at each node:
 - $x_2 = \neg x_3 \implies$ add 2 clauses: $x_2 \lor \overline{x_3}, \overline{x_2} \lor \overline{x_3}$
 - $x_1 = x_4 \lor x_5 \implies$ add 3 clauses: $x_1 \lor \overline{x_4}, x_1 \lor \overline{x_5}, x_1 \lor x_4 \lor x_5$
 - $x_0 = x_1 \land x_2 \implies$ add 3 clauses: $\overline{x_0} \lor x_1, \overline{x_0} \lor x_2, x_0 \lor \overline{x_1} \lor \overline{x_2}$

- Hard-coded input values and output value.
 - $x_5 = 0 \implies$ add 1 clause: $\overline{x_5}$
 - $x_0 = 1 \implies$ add 1 clause: x_0

- Final step: turn clauses of length < 3 into clauses of length exactly 3. ·
Observation. All problems below are NP-complete and polynomial reduce to one another!

NP-Completeness

CIRCUIT-SAT

3-SAT

3-SAT reduces to INDEPENDENT SET

INDEPENDENT SET

VERTEX COVER

SET COVER

DIR-HAM-CYCLE

HAM-CYCLE

TSP

GRAPH 3-COLOR

PLANAR 3-COLOR

SUBSET-SUM

SCHEDULING

by definition of NP-completeness
Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.
Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V.

NO: bipartite graph with odd number of nodes.
Traveling Salesperson Problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

HAM-CYCLE: given a graph \(G = (V, E) \), does there exists a simple cycle that contains every node in \(V \)?

Claim. \(\text{HAM-CYCLE} \leq_p \text{TSP} \).

Pf.
- Given instance \(G = (V, E) \) of \(\text{HAM-CYCLE} \), create \(n \) cities with distance function
 \[
 d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
 \end{cases}
 \]
- TSP instance has tour of length \(\leq n \) iff \(G \) is Hamiltonian.

Remark. TSP instance in reduction satisfies \(\Delta \)-inequality.
Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that arise in practice.
Vertex Cover

VERTEX COVER: Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$, or $v \in S$, or both.

$k = 4$
$S = \{3, 6, 7, 10\}$
Finding Small Vertex Covers

Q. What if \(k \) is small?

Brute force. \(O(k n^{k+1}) \).
- Try all \(\binom{n}{k} = O(n^k) \) subsets of size \(k \).
- Takes \(O(k n) \) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on \(k \), e.g., to \(O(2^k k n) \).

Ex. \(n = 1,000, k = 10 \).
- Brute. \(k n^{k+1} = 10^{34} \Rightarrow \) infeasible.
- Better. \(2^k k n = 10^7 \Rightarrow \) feasible.

Remark. If \(k \) is a constant, algorithm is poly-time; if \(k \) is a small constant, then it's also practical.
Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O(2^k \cdot kn)$ time.

```java
boolean Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains $\geq kn$ edges) return false

    let (u, v) be any edge of G
    a = Vertex-Cover(G - {u}, k-1)
    b = Vertex-Cover(G - {v}, k-1)
    return a or b
}
```

Pf.

- Correctness follows previous two claims.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes $O(kn)$ time. ·
Finding Small Vertex Covers: Recursion Tree

\[T(n, k) \leq \begin{cases}
 cn & \text{if } k = 1 \\
 2T(n, k-1) + ckn & \text{if } k > 1
\end{cases} \Rightarrow T(n, k) \leq 2^k c k n \]
Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.
\[\text{degree} = 1 \]

Key observation. If v is a leaf, there exists a maximum size independent set containing v.

Pf. (exchange argument)
- Consider a max cardinality independent set S.
- If \(v \in S \), we're done.
- If \(u \notin S \) and \(v \notin S \), then \(S \cup \{v\} \) is independent \(\Rightarrow S \) not maximum.
- IF \(u \in S \) and \(v \notin S \), then \(S \cup \{v\} - \{u\} \) is independent. •
Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```plaintext
Independent-Set-In-A-Forest(F) {
    S ← φ
    while (F has at least one edge) {
        Let e = (u, v) be an edge such that v is a leaf
        Add v to S
        Delete from F nodes u and v, and all edges incident to them.
    }
    return S
}
```

Pf. Correctness follows from the previous key observation. ·

Remark. Can implement in $O(n)$ time by considering nodes in postorder.
Weighted Independent Set on Trees

Weighted independent set on trees. Given a tree and node weights $w_v > 0$, find an independent set S that maximizes $\sum_{v \in S} w_v$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

- $OPT_{in}(u) = \max$ weight independent set rooted at u, containing u.
- $OPT_{out}(u) = \max$ weight independent set rooted at u, not containing u.

\[
OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)
\]

\[
OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max \{OPT_{in}(v), OPT_{out}(v)\}
\]
Independent Set on Trees: Greedy Algorithm

Theorem. The dynamic programming algorithm find a maximum weighted independent set in trees in $O(n)$ time.

```plaintext
Weighted-Independent-Set-In-A-Tree(T) {
   Root the tree at a node r
   foreach (node u of T in postorder) {
      if (u is a leaf) {
         $M_{in}[u] = w_u$
         $M_{out}[u] = 0$
      }
      else {
         $M_{in}[u] = \sum_{v \in \text{children}(u)} M_{out}[v] + w_v$
         $M_{out}[u] = \sum_{v \in \text{children}(u)} \max(M_{out}[v], M_{in}[v])$
      }
   }
   return $\max(M_{in}[r], M_{out}[r])$
}

Pf. Takes $O(n)$ time since we visit nodes in postorder and examine each edge exactly once. •
```
Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

\(\rho \)-approximation algorithm.
- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio \(\rho \) of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!
Load Balancing

Input. m identical machines; n jobs, job j has processing time t_j.
- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let $J(i)$ be the subset of jobs assigned to machine i. The **load** of machine i is $L_i = \sum_{j \in J(i)} t_j$.

Def. The **makespan** is the maximum load on any machine $L = \max_i L_i$.

Load balancing. Assign each job to a machine to minimize makespan.
Load Balancing: List Scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

```plaintext
List-Scheduling(m, n, t_1, t_2, ..., t_n) {
    for i = 1 to m {
        L_i ← 0 ← load on machine i
        J(i) ← ∅ ← jobs assigned to machine i
    }

    for j = 1 to n {
        i = argmin_k L_k ← machine i has smallest load
        J(i) ← J(i) ∪ {j} ← assign job j to machine i
        L_i ← L_i + t_j ← update load of machine i
    }
}
```

Implementation. $O(n \log n)$ using a priority queue.
Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L^*.

Lemma 1. The optimal makespan $L^* \geq \max_j t_j$.
Pf. Some machine must process the most time-consuming job. ·

Lemma 2. The optimal makespan $L^* \geq \frac{1}{m} \sum_j t_j$.
Pf.
- The total processing time is $\sum_j t_j$.
- One of m machines must do at least a $1/m$ fraction of total work.

Not very strong lower bound. What if one job is very big and others are small jobs? ·
Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L_i of bottleneck machine i.
- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i - t_j \Rightarrow L_i - t_j \leq L_k$ for all $1 \leq k \leq m$.

![Diagram showing load balancing with blue jobs scheduled before job j and machine i.]
Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L_i of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i - t_j \Rightarrow L_i - t_j \leq L_k$ for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m:

$$L_i - t_j \leq \frac{1}{m} \sum_k L_k \leq \frac{1}{m} \sum_j t_j \leq L^*$$

Lemma 2

- Now $L_i = (L_i - t_j) + t_j \leq 2L^*$.

The solution attained by the greedy algorithm is less 2 times the optimal solution.