Image Segmentation

Regions and Edges

• Ideally, regions are bounded by closed contours
 - We could “fill” closed contours to obtain regions
 - We could “trace” regions to obtain edges
• Unfortunately, these procedures rarely produce satisfactory results.

• Edges are found based on DIFFERENCES between values of adjacent pixels.
• Regions are found based on SIMILARITIES between values of adjacent pixels.
• Goal associate some higher level – more meaningful units with the regions of the image.

• Regions should be homogeneous with respect to some characteristic
• (gray level, texture, color)
• Interiors should be simple – no holes
• Adjacent regions should be significantly different
• Boundaries should be smooth – not ragged

J. Kosecka
Region Segmentation

- A segmentation is a partition R_1, R_2, \ldots, R_n s.t.:
 $\bigcup_{i=1}^{n} R_i = I$
 $R_i \cap R_j = 0$ for $i \neq j$
 $\text{Pred}(R_i) = \text{true} \ \forall i$
 $\text{Pred}(R_i \cup R_j) = \text{false} \ \forall R_i$ adjacent R_j

- Where "Pred" is a function that evaluates similarities of the pixels in the region

Histogram-based Segmentation

- Previously - thresholding determine the best threshold given a histogram of intensities
- Automatic thresholding
 - P-tile method
 - Mode method
 - Peakiness detection
 - Iterative algorithm

Limitations of histogram methods:

- Use **GLOBAL** information
- Ignore **SPATIAL** relationships among pixels.

Clustering Methods

- Pattern recognition - process of partitioning a set of 'patterns' into clusters - find subsets of points which are close together
- Examples
 - Cluster pixels based on intensity values
 - Color properties
 - Motion/optical flow properties
 - Texture measurements etc.

Input - set of measurements x_1, x_2, \ldots, x_m
Output - set of clusters and their centers
Clustering

• Find set of clusters such that the least squares Error is minimized

\[E = \sum_{k=1}^{K} \sum_{x_i \in C_i} \| x_i - m_k \|^2 \]

Iterative K-means clustering algorithm
1. set \(\text{iter} = 1 \)
2. Choose randomly K-means \(m_1, \ldots, m_k \)
3. For each data point \(x_i \), compute distance to each of the means and assign the point to the cluster with the nearest mean
4. iter = iter + 1
5. Recompute the means based on the new assignments of points to clusters
6. Repeat 3-5 until the cluster centers do not change much

Soft k-means

- assign membership of points to clusters probabilistically
- Recomputed means as weighted average of the points (weights are the membership probabilities)

SPLIT & MERGE Algorithms

• Simple intensity algorithms usually result in too many regions.
 - Reasons:
 • high frequency noise
 • Gradual transitions between regions
 - After segmentation, regions might need refinement:
 - Interactively or automatically
 - May use domain and or image process knowledge

Merging Algorithm

• Merge ADJACENT, SIMILAR regions
• What does "similar" mean?
 - Examples:
 • "similar" average values: \(|\mu_i - \mu_j| < T \)
 • "small" spread of gray values: \(|g_{\max} - g_{\min}| < T \)
 - \(g_{\max} = \max\{g(x,y) \mid (x,y) \text{ from union of } R_i \text{ and } R_j\} \)
 - \(g_{\min} = \min\{g(x,y) \mid (x,y) \text{ from union of } R_i \text{ and } R_j\} \)
 - Note:
 • A similar to B, and B similar to C does not imply that A is similar to C.
Merging Algorithm

- Start with an initial segmentation
 - Ex:
 - By thresholding,
 - nxn (5x5, 7x7, etc) regions
 - manually selected
 - Each region has a unique "label"

Merging Algorithm

- Form the Region Adjacency Graph
 - Regions are the nodes
 - Adjacency relations are the links

Merging Algorithm

- For each region in the image do:
 - Consider its adjacent regions and test if they are similar
 - If they are similar, merge them and update the RAG

Merging Algorithm

- Repeat the previous step until there are no more merges.
Splitting Algorithms

- When are regions split?
 - Split a region if:
 - A property is not "constant"
 - A predicate is not TRUE
 - Deciding to split is fairly straight-forward.

- Where to split?
 - This is a difficult problem.
 - Some approaches:
 - Divide it into equal parts along image dimensions.
 - Look for strong edges to create boundaries.

Split and Merge Algorithms

- Split and merge are often used together:
 - Start with the initial image and a "predicate"
 - Test the image with the predicate:
 - If it doesn't satisfy it, split image into quarters;
 - Repeat for each sub-region until there are no more splits.
 - Test adjacent regions with the predicate:
 - If they satisfy it: merge them.
Quadtree Representation

- Quadtrees:
 - Trees where nodes have 4 children
- Build quadtree:
 - Nodes represent regions
 - Every time a region is split, it's node gives birth to 4 children
 - Leaves are nodes for uniform regions
- Merging:
 - Siblings that are "similar" can be merged.

Normalization cut approach - J. Shi, J. Malik (see textbook)

Segmentation as Graph Partitioning

- (Shi & Malik "97)
- Idea - each pixel in the image is a node in the graph
- Arcs represent similarities between adjacent pixels
- Goal - partition the graph into a sets of vertices (regions), such that the similarity within the region is high - and similarity across the regions is low.

- See textbook for detailed description the algorithm.
Graph theoretic clustering

- Represent tokens using a weighted graph.
 - Affinity matrix
- Cut up this graph to get subgraphs with strong interior links

Measuring Affinity

Intensity
\[\text{aff}(x, y) = \exp \left\{ -\frac{1}{2\sigma^2} \left(\|x - I(y)\|^2 \right) \right\} \]

Distance
\[\text{aff}(x, y) = \exp \left\{ -\frac{1}{2\sigma^2} \left(\|x - y\|^2 \right) \right\} \]

Texture
\[\text{aff}(x, y) = \exp \left\{ -\frac{1}{2\sigma^2} \left(\|x - c(y)\|^2 \right) \right\} \]
Scale affects affinity

Eigenvectors and cuts

• Simplest idea: we want a vector \(a \) giving the association between each element and a cluster
• We want elements within this cluster to, on the whole, have strong affinity with one another
• We could maximize
 \[a^T A a \]
 \[a^T a = 1 \]

Example eigenvector

More than two segments

• Two options
 - Recursively split each side to get a tree, continuing till the eigenvalues are too small
 - Use the other eigenvectors
Segmentation and Grouping

- Motivation: not information is evidence
- Obtain a compact representation from an image/motion sequence/set of tokens
- Should support application
- Broad theory is absent at present

- Grouping (or clustering)
 - collect together tokens that “belong together”
- Fitting
 - associate a model with tokens
 - issues
 - which model?
 - which token goes to which element?
 - how many elements in the model?

Basic ideas of grouping in humans

- Figure-ground discrimination
 - grouping can be seen in terms of allocating some elements to a figure, some to ground
 - impoverished theory

- Gestalt properties
 - elements in a collection of elements can have properties that result from relationships (Muller-Lyer effect)
 - Gestalt-qualitat
 - A series of factors affect whether elements should be grouped together
 - Gestalt factors
Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region

Parallelism

Symmetry

Continuity

Closure
Segmentation by K-Means

- Choose a fixed number of clusters
- Choose cluster centers and point-cluster allocations to minimize error
- can’t do this by search, because there are too many possible allocations.

\[
\sum_{i \text{clusters}} \left\{ \sum_{j \text{elements of } i\text{'th cluster}} \|x_j - \mu_i\|^2 \right\}
\]

J. Kosecka

K-means clustering using intensity alone and color alone

J. Kosecka

K-means using color alone, 11 segments

J. Kosecka

K-means using color alone, 11 segments.

J. Kosecka
Segmentation with EM

- There are \(n \) pixels and \(g \) groups - compute how likely is a pixel belonging to group and also what are the parameters of the group
- Probabilistic K-means clustering
- E.g. Use of texture and color cues

Motion segmentation with EM

- Model image pair (or video sequence) as consisting of regions of parametric motion
 - affine motion is popular
 - Likelihood
 - assume
 \[
 I(x, y, t) = I(x + v_x, y + v_y, t + 1) + \text{noise}
 \]
- Straightforward missing variable problem, rest is calculation

- Now we need to
 - determine which pixels belong to which region
 - estimate parameters

Three frames from the MPEG “flower garden” sequence

Grey level shows region no. with highest probability

Segments and motion fields associated with them