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Abstract

The visual recognition problem is central to computer vision research. From
robotics to information retrieval, many desired applications demand the ability to iden-
tify and localize categories, places, and objects. This tutorial overviews computer vision
algorithms for visual object recognition and image classification. We introduce primary
representations and learning approaches, with an emphasis on recent advances in the
field. The target audience consists of researchers or students working in Al, robotics,
or vision who would like to understand what methods and representations are available
for these problems. This lecture summarizes what is and isn’t possible to do reliably
today, and overviews key concepts that could be employed in systems requiring visual
categorization.

Keywords: More specifically, the topics we cover in detail within the above are:
global representations versus local descriptors; detection and description of local invari-
ant features; efficient algorithms for matching local features, including tree-based and
hashing-based search algorithms; visual vocabularies and bags-of-words; methods to ver-
ify geometric consistency according to parameterized geometric transformations; deal-
ing with outliers in correspondences, including RANSAC and the Generalized Hough
transform; window-based descriptors, including histograms of oriented gradients and
rectangular features; part-based models, including star graph models and fully con-
nected constellations; pyramid match kernels; detection via sliding windows; Hough
voting; Generalized distance transform; the Implicit Shape Model; and the Deformable
Part-based Model.
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Preface

This lecture summarizes the material in a tutorial we gave at AAAT 2008 (Grau-
man & Leibe 2008)'. Our goal is to overview the types of methods that figure
most prominently in object recognition research today, in order to give a survey of
the concepts, algorithms, and representations that one might use to build a visual
recognition system. Recognition is a rather broad and quickly moving field, and so we
limit our scope to methods that are already used fairly frequently in the literature.
As needed, we point the reader to outside references for more details on certain
topics. We assume that the reader has basic familiarity with machine learning algo-
rithms for supervised classification, and some background in low-level image processing.

Outline: The text is divided primarily according to the two forms of recogni-
tion: specific and generic. In the first chapter, we motivate those two problems and
point out some of their main challenges. Chapter 2 then overviews the problem of
specific object recognition, and the global and local representations used by current
approaches. Then, in Chapters 3 through 5, we explain in detail how today’s state-of-
the-art methods utilize local features to identify an object in a new image. This entails
efficient algorithms for local feature extraction, for retrieving candidate matches, and
for performing geometric verification. We wrap up our coverage of specific objects by
outlining example end-to-end systems from recent work in Chapter 6, pulling together
the key steps from the prior chapters on local features and matching.

Chapter 7 introduces the generic (category-level) recognition problem, and is fol-
lowed by a discussion of the window-based and part-based representations commonly
used to describe object classes in Chapter 8. Having overviewed these models, we then
describe how they are used to localize instances of a given category in new images in
Chapter 9. Then in Chapter 10 we describe how the window-based or part-based models
are typically learned, including both the standard training data preparation process as
well as the applicable classifiers. As with the specific object recognition, we conclude
this portion of the lecture with a chapter outlining some state-of-the-art end-to-end
systems that utilize the basic tools we have introduced (Chapter 11).

Finally, we end the lecture with a chapter overviewing some important consid-
erations not discussed in detail in the above (such as context models, or concurrent
segmentation and recognition), and provide pointers on these and other interesting
subproblems that are being actively studied in the recognition community.

1The authors’ website associated with that tutorial provides pointers to online resources relevant to the text,
including datasets, software, and papers.
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CHAPTER 1

Introduction
1.1 OVERVIEW

Recognition is the core problem of learning visual categories and then identifying new
instances of those categories. Most any vision task fundamentally relies on the ability
to recognize objects, scenes, and categories. Visual recognition itself has a variety of
potential applications that touch many areas of artificial intelligence and information
retrieval—including, for example, content-based image search, video data mining, or
object identification for mobile robots.

Recognition is generally considered by vision researchers as having two types: the
specific case and the generic category case (see Figure 1.1). In the specific case, we
seek to identify instances of a particular object, place, or person—for example, Carl
Gauss’s face, the Eiffel Tower, or a certain magazine cover. In contrast, at the category
level, we seek to recognize different instances of a generic category as belonging to the
same conceptual class—for example, buildings, coffee mugs, or cars. In either case, we
can expect that there may be variations in appearance among different instances of
the same class or object. This lecture explains the basic algorithms for both forms of
recognition, based on advances in the computer vision literature in the last eight to ten
years.

When trying to address the recognition task, an important first question to ask
is what sorts of categories can be recognized on a visual basis? In order to answer this
question, it is useful to look at how humans organize knowledge at different levels. This
question has received considerable attention in Cognitive Psychology (Brown 1958).
Taking an example from Brown’s work, a dog can not only be thought of as a dog,
but also as a boxer, a quadruped, or in general an animate being (Brown 1958). Yet,
dog is the term (or level in the semantic hierarchy) that comes to mind most easily,
which is by no means accidental. Experiments show that there is a basic level in human
categorization at which most knowledge is organized (Rosch et al. 1976). According to
Rosch et al. (1976) and Lakoff (1987), this basic level is also

e the highest level at which category members have similar perceived shape.
e the highest level at which a single mental image can reflect the entire category.

e the highest level at which a person uses similar motor actions for interacting with
category members.

e the level at which human subjects are usually fastest at identifying category mem-
bers.
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Figure 1.1: The recognition problem includes identifying instances of a particular object or
scene (top) as well as generalizing to categorize instances at a basic level (bottom). This lecture
overviews methods for specific object recognition in Chapters 2 through 6, followed by generic
object categorization and detection in Chapters 7 through 11.

e the first level named and understood by children.

Together, those properties indicate that basic-level categories are a good starting point
for visual classification, as they seem to require the simplest visual category represen-
tations. Category concepts below this basic level carry some element of specialization
(e.g., different sub-species of dogs or different models of cars) down to an individual
level of specific objects (e.g., my dog or my car), which require different representations
for recognition. Concepts above the basic level (e.g., quadruped or vehicle) make some
kind of abstraction and therefore typically require additional world knowledge on top
of the visual information.

In this lecture, we first overview algorithms for recognizing specific objects, and
then describe techniques for recognizing basic-level visual categories. We explicitly do
not model functional categories (e.g. “things you can sit on”) and ad-hoc categories
(e.g. “things you can find in an office environment”) (Barsalou 1983). Though those
categories are also important, they exist only on a higher level of abstraction and require
a more advanced degree of world knowledge and experience living in the real world.
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Figure 1.2: The task of a given recognition system can vary in the level of detail, ranging
from an image-level label (left), to a bounding box detection (center), to a complete pixel-level
segmentation of the object (right).

In computer vision, the current standard pipeline for specific object recognition
relies on a matching and geometric verification paradigm. In contrast, for generic object
categorization, it often also includes a statistical model of appearance or shape learned
from examples. For the categorization problem, learning visual objects entails gathering
training images of the given category, and then extracting or learning a model that can
make new predictions for object presence or localization in novel images. Models are
often constructed via supervised classification methods, with some specialization to the
visual representation when necessary.

The type of training data required as well as the target output can vary depending
on the detail of recognition that is required. Specifically, the target task may be to
name or categorize objects present in the image, to further detect them with coarse
spatial localization, or to segment them by estimating a pixel-level map of the named
foreground objects and the background (see Figure 1.2).

1.2 CHALLENGES

Matching and learning visual objects is challenging on a number of fronts. Instances of
the same object category can generate very different images, depending on confound-
ing variables such as illumination conditions, object pose, camera viewpoint, partial
occlusions, and unrelated background “clutter” (see Figure 1.3). Different instances of
objects from the same category can also exhibit significant variations in appearance.
Furthermore, in many cases appearance alone is ambiguous when considered in isolation,
making it necessary to model not just the object class itself, but also its relationship to
the scene context and priors on usual occurrences.
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Figure 1.3: Images containing instances of the same object category can appear dramatically
different; recognition methods must therefore be robust to a variety of challenging nuisance
parameters.

Aside from these issues relating to robustness, today’s recognition algorithms also
face notable challenges in computational complexity and scalability. The fact that about
half of the cerebral cortex in primates is devoted to processing visual information gives
some indication of the computational load one can expect to invest for this complex
task (Felleman & van Essen 1991). Highly efficient algorithms are necessary to accom-
modate rich high-dimensional image representations, to search large image databases, or
to extend recognition to thousands of category types. In addition, scalability concerns
also arise when designing a recognition system’s training data: while unambiguously
labeled image examples tend to be most informative, they are also most expensive to
obtain. Thus, methods today must consider the trade-offs between the extent of costly
manual supervision an algorithm requires versus the advantages given to the learning
process.
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Figure 1.4: A sampling of the kind of image data recognition methods have tackled over the
years, approximately ordered from top left to bottom right. As this imagery reflects, the task
has evolved from single object instances and prepared data for particular classes, to include
fairly natural images with generic object categories and clear viewpoint changes. FIGS ARE
FROM PAPERS AND DATASETS.

1.3 THE STATE OF THE ART

In spite of these clear challenges, object recognition research has made notable strides
within the last decades. Recent advances have shown the feasibility of learning accurate
models for some well-defined object categories—from early successes for detecting a
particular class of interest (notably faces and pedestrians), to indexing methods for
retrieving instances of a particular object, on to models handling tens of generic object
categories. Within the last few years, thanks in part to work developing standardized
benchmark databases and recognition challenges, researchers have set their sights on
more complex multi-class problems that involve detecting object classes within realistic
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cluttered backgrounds, or categorizing objects from hundreds to thousands of categories.
Figure 1.4 illustrates the evolution of the field’s attention by showing snapshots of the
kinds of datasets that have been employed over the years, ranging from the late 1980’s
until today.

While a variety of approaches have been explored, they all must make a few com-
mon choices: How will the images and models be represented? Using that representation,
how is a category learned? Given a novel image, how is categorization or detection car-
ried out? In this tutorial we overview algorithms for visual recognition, and focus on
the possible answers to these questions in the light of recent progress in the field.



CHAPTER 2

Overview: Recognition of Specific Objects

The first half of this book will address the problem of recognizing specific objects.
For this, we will give an overview of suitable representations and the corresponding
recognition pipelines.

The second half of the book, starting from Chapter 7, will then introduce methods
for recognizing generic object categories.

2.1 GLOBAL IMAGE REPRESENTATIONS

Perhaps the most direct representation of an appearance pattern is to write down the
intensity or color at each pixel, in some defined order relative to a corner of the image
(see Figure 2.1 (a)). If we can assume that the images are cropped to the object of
interest and rather aligned in terms of pose, then the pixel reading at the same position
in each image is likely to be similar for same-class examples. Thus the list of intensities
can be considered a point in a high-dimensional appearance space where the Euclidean
distances between images reflect overall appearance similarity.

In what is among the earliest work proposing a statistical model for object appear-
ance, Turk and Pentland considered a related vector space model for images (Turk &
Pentland 1992). Their Eigenface approach uses Principal Components Analysis (PCA)
to recover the principal directions of variation in the space of all face images, thereby
reducing the high-dimensional pixel lists to a much more compact encoding of the key
appearance attributes. To recognize a novel image window, it is projected onto the sub-
space spanned by the eigenfaces, and then mapped to the face label for the training
instance that is nearest to it in the lower-dimensional subspace.

Murase & Nayar (1995) generalized this idea to arbitrary 3D objects and con-
structed a system that could recognize and distinguish 100 objects in real-time (Nayar
et al. 1996). For varying poses (rotations around the object’s vertical axis), the pro-
jected images lie on a manifold in the eigenspace. Murase & Nayar’s system achieves
recognition invariant to object pose by projecting the (pre-segmented) test image onto
the closest point on the manifold. By interpolating the manifold in-between training
images, a highly accurate pose estimation can be achieved.

Belhumeur & Kriegman (1996) extend the recognition approach into a different
direction. The subspace created by PCA is designed to minimize the reconstruction
error by projecting images onto their dimensions of maximum variability. While this
projection creates a subspace of reduced dimensionality with minimal loss of image
information, the corresponding projection does not consider object class information
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Figure 2.1: A holistic description of a window’s appearance can be formed by its ordered (a)

(a)

or unordered (b) set of intensities. In (a), the images’ ordered lists of intensities are considered
as high-dimensional points; very similar images will have close values in each dimension. In (b),
the images are mapped to grayscale histograms; note how the distribution of intensities has a
distinct pattern depending on the object type.

and may therefore result in suboptimal discrimination between different model objects.
Belhumeur & Kriegman (1996) therefore propose to optimize class separability instead
by working in a subspace obtained by Fisher’s Linear Discriminant Analysis (often
called FLD or LDA, depending on the community). The resulting Fisherfaces approach
achieves better discrimination capabilities than PCA-based methods and can be applied
to construct subspaces optimized for specific discrimination tasks (such as distinguishing
people wearing glasses from people wearing no glasses).

A limitation of ordered global representations is their requirement that the 2D
patterns be closely aligned; this can be expensive to ensure when creating a labeled
training set of images. For example, if a face class is represented by ordered lists of
intensities taken from examples of frontal faces, with even a slight shift of an example,
the nose pixels will no longer be in the “right” position, and the global representation
will fail.

Given an image window, we can alternatively form a simple holistic description
of its pixels using the distribution of its colors (or intensities, for grayscale images; see
Figure 2.1(b)). A color histogram measures the frequency with which each color appears
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among all the window’s pixels, where discrete color types are defined as bins in the color
space, e.g., RGB or Lab. Being orderless, the histogram offers invariance to viewing
conditions and some tolerance for partial occlusions. This insensitivity makes it possible
to use a small number of views to represent an object, assuming a closed-world pool with
distinctly colored objects. The first approach making use of color histograms for specific
object recognition was proposed by Swain & Ballard (1991). The idea was subsequently
extended by Schiele & Crowley (2000) to multidimensional histograms of local image
neighborhood operators (ranging from simple derivatives to more complex derivative
combinations) extracted at multiple scales. Those histograms effectively capture the
probability distribution of certain feature combinations occurring on the object. In
addition to a global recognition approach by matching entire histograms, Schiele &
Crowley (2000) also propose a local method that estimates the maximum a-posteriori
probability of different model objects from a few sampled neighborhoods in the test
image.!

Most of the global representations described above lead to recognition approaches
based on comparisons of entire images or entire image windows. Such approaches are
well-suited for learning global object structure, but they cannot cope well with partial
occlusion, strong viewpoint changes, or with deformable objects. In the following, we
describe an alternative representation based on local features that has in the meantime
become the standard for specific object recognition tasks.

2.2 LOCAL FEATURE REPRESENTATIONS

The successful development of local invariant feature detectors and descriptors has had
a tremendous impact on research in object recognition. Those features have made it
possible to develop robust and efficient recognition approaches that can operate under
a wide variety of viewing conditions and under partial occlusion.

In the following chapters, we give an overview of the basic processing pipeline
underlying many of those approaches for the case of specific object recognition. A
visualization of the basic recognition procedure is shown in Figure 2.2. Given a model
view of a (rigid) object, the task is to recognize whether this particular object is present
in the test image and, if yes, where it is precisely located and how it is oriented. This
task is addressed by representing the image content by a collection of local features
that can be extracted in a scale and rotation invariant manner. Those local features are
first computed in both images independently. The two feature sets are then matched
in order to establish putative correspondences. Due to the specificity of state-of-the-art
feature descriptors such as SIFT (Lowe 2004) or SURF (Bay et al. 2006), the number

IThese are a few global descriptors initially used for specific object recognition. See Section 8.1 of Chapter 8 for
an overview of additional window-based representations now typically employed for generic categories.
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Figure 2.2: Visualization of the local feature-based recognition procedure. Local features (such
as SIFT (Lowe 2004)) are independently extracted from both images, and their descriptors are
matched to establish putative correspondences. These candidate matches are then used in order
to verify if the features occur in a consistent geometric configuration FIGURE FROM DAVID
LOWE.

of correspondences may already provide a strong indication whether the target object
is likely to be contained in the image.

However, there will typically also be a number of mismatches or ambiguous lo-
cal structures. For this reason, an additional geometric verification stage is applied in
order to ensure that the candidate correspondences occur in a consistent geometric
configuration.

Thus, the recognition procedure consists of the following basic steps:

1. Extract local features from both the training and test images independently.
2. Match the feature sets to find putative correspondences.
3. Verify if the matched features occur in a consistent geometric configuration.

In the following three chapters (Chapters 3 through 5), we will describe each of these
steps in more detail. Then, in Chapter 6, we describe recent systems for specific object
recognition that put all of these components together.
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CHAPTER 3

Local Features: Detection and
Description

Significant progress towards robustly recognizing objects has been made in the past
decade through the development of local invariant features. These features allow the
algorithm to find local image structures in a repeatable fashion and to encode them in a
representation that is invariant to a range of image transformations, such as translation,
rotation, scaling, and affine deformation. The resulting features then form the basis of
approaches for recognizing both specific objects and object categories.

In this chapter, we will explain the basic ideas and implementation steps behind
state-of-the-art local feature detectors and descriptors. A more extensive treatment of
local features, including detailed comparisons and usage guidelines, can be found in
(Tuytelaars & Mikolajczyk 2007). Systematic experimental comparisons are reported
in (Mikolajczyk et al. 2005, Mikolajczyk & Schmid 2005).

3.1 INTRODUCTION

The purpose of local invariant features is to provide a representation that allows to
efficiently match local structures between images. That is, we want to obtain a sparse
set of local measurements that capture the essence of the underlying input images and
that encode their interesting structure. To meet this goal, the feature extractors must
fulfill two important criteria:

e The feature extraction process should be repeatable and precise, so that the same
features are extracted from two images showing the same object.

e At the same time, the features should be distinctive, so that different image struc-
tures can be told apart from each other.

In addition, we typically require a sufficient number of feature regions to cover the
target object, so that it can still be recognized under partial occlusion. This is achieved
by the following feature extraction pipeline, illustrated in Figure 3.1:

1. Find a set of distinctive keypoints.
2. Define a region around each keypoint in a scale- or affine-invariant manner.

3. Extract and normalize the region content.
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Figure 3.1: An illustration of the recognition procedure with local features. We first find
distinctive keypoints in both images. For each such keypoint, we then define a surrounding
region in a scale- and rotation-invariant manner. We extract and normalize the region content
and compute a local descriptor for each region. Feature matching is then performed by comparing
the local descriptors using a suitable similarity measure. FIGURE FROM Krystian Mikolajczyk
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4. Compute a descriptor from the normalized region.
5. Match the local descriptors.

In the remainder of this chapter, we will discuss the keypoint and descriptor steps in
detail. Then in the following chapter, we will describe methods for computing candidate
matches among the descriptors. Once we have candidate matches, we can then proceed
to verify their geometric relationships, as we will describe in Chapter 5.

3.2 DETECTION OF INTEREST POINTS AND REGIONS

3.2.1 KEYPOINT LOCALIZATION

The first step of the local feature extraction pipeline is to find a set of distinctive
keypoints that can be reliably localized under varying imaging conditions, viewpoint
changes, and in the presence of noise. In particular, the extraction procedure should
yield the same feature locations if the input image is translated or rotated. It is obvious
that those criteria cannot be met for all image points. For instance, if we consider a
point lying in a uniform region, we cannot determine its exact motion, since we cannot
distinguish the point from its neighbors. Similarly, if we consider a point on a straight
line, we can only measure its motion perpendicular to the line. This motivates us to
focus on a particular subset of points, namely those exhibiting signal changes in two
directions. In the following, we will present two keypoint detectors that employ different
criteria for finding such regions: the Hessian detector and the Harris detector.

3.2.1.1 The Hessian Detector

The Hessian detector (Beaudet 1978) searches for image locations that exhibit strong
derivatives in two orthogonal directions. It is based on the matrix of second derivatives,
the so-called Hessian. As derivative operations are sensitive to noise, we always use
Gaussian derivatives in the following, i.e. we combine the derivative operation with a
Gaussian smoothing step with smoothing parameter o.

I.(x,0) I.,(x,0)

H(x,0) = Ly(x,0) I,,(x,0)

(3.1)
The detector computes the second derivatives I, I,,, and I, for each image point and
then searches for points where the determinant of the Hessian becomes maximal:

det(H) = I, 1, — I2,. (3.2)

This search is usually performed by computing a result image containing the Hessian
determinant values and then applying non-mazimum suppression using a 3 x 3 window.
In this procedure, the search window is swept over the entire image, keeping only pixels
whose value is larger than the values of all 8 immediate neighbors inside the window.
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Figure 3.2: The Harris detector searches for image neighborhoods where the second-moment
matrix C has two large eigenvalues, corresponding to two dominant orientations. The resulting
points often correspond to corner-like structures. IMAGE SOURCE 7

The detector then returns all remaining locations whose value is above a pre-defined
threshold 6. As shown in Figure 3.7(top left), the resulting detector responses are mainly
located on corners and in strongly textured image areas.

3.2.1.2 The Harris Detector
The popular Harris/Forstner detector (Forstner & Giilch 1987, Harris & Stephens 1988)
was explicitly designed for geometric stability. It defines keypoints to be “points that
have locally maximal self-matching precision under translational least-squares template
matching” (Triggs 2004). In practice, these keypoints often correspond to corner-like
structures. The detection procedure is visualized in Figure 3.2.

The Harris detector proceeds by searching for points x where the second-moment
matrix C around x has two large eigenvalues. The matrix C can be computed from the
first derivatives in a window around x, weighted by a Gaussian G(x,7):

I’(x,0) I,1,(x,0)

Clx,0,0) =G0 x| 17 (x0) I2(x,0)

(3.3)

In this formulation, the convolution with the Gaussian G(x, ) takes the role of sum-
ming over all pixels in a circular local neighborhood, where each pixel’s contribution is
additionally weighted by its proximity to the center point.
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Instead of explicitly computing the eigenvalues of C, the following equivalences
are used

det(C) = A (3.4)
trace(C) = A+ Ao (3.5)

to check if their ratio r = i—; is below a certain threshold. With

trace’(C) (M 4+X2)?  (rha+X)*  (r+1)°

= = = 3.6
det(C) A1y Y r (36)

this can be expressed by the following condition
det(C) — atrace’(C) > t, (3.7)

which avoids the need to compute the exact eigenvalues. Typical values for « are in the
range of 0.04 — 0.06. The parameter & is usually set to 20, so that the considered image
neighborhood is slightly larger than the support of the derivative operator used.

Figure 3.7(top right) shows the results of the Harris detector and compares them
to those of the Hessian. As can be seen, the returned locations are slightly different as a
result of the changed selection criterion. In general, it can be stated that Harris locations
are more specific to corners, while the Hessian detector also returns many responses on
regions with strong texture variation. In addition, Harris points are typically more
precisely located as a result of using first derivatives rather than second derivatives and
of taking into account a larger image neighborhood.

Thus, Harris points are preferable when looking for exact corners or when pre-
cise localization is required, whereas Hessian points can provide additional locations of
interest that result in a denser coverage of the object.

3.2.2 SCALE INVARIANT REGION DETECTION

While shown to be remarkably robust to image plane rotations, illumination changes,
and noise (Schmid et al. 2000), the locations returned by the Harris and Hessian detec-
tors are only repeatable up to relatively small scale changes. The reason for this is that
both detectors rely on Gaussian derivatives computed at a certain fixed base scale . If
the image scale differs too much between the test images, then the extracted structures
will also be different. For scale invariant feature extraction, it is thus necessary to detect
structures that can be reliably extracted under scale changes.

3.2.2.1 Automatic Scale Selection

The basic idea behind automatic scale selection is visualized in Figure 3.3. Given a
keypoint in each image of an image pair, we want to determine whether the surrounding
image neighborhoods contain the same structure up to an unknown scale factor. In
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Figure 3.3: The principle behind automatic scale selection. Given a keypoint location, we eval-
uate a scale-dependent signature function on the keypoint neighborhood and plot the resulting
value as a function of the scale. If the two keypoints correspond to the same structure, then
their signature functions will take similar shapes and corresponding neighborhood sizes can be
determined by searching for scale-space extrema of the signature function independently in both
images. FIGURE FROM Krystian Mikolajczyk

principle, we could achieve this by sampling each image neighborhood at a range of
scales and performing N x N pairwise comparisons to find the best match. This is
however too expensive to be of practical use. Instead, we evaluate a signature function
on each sampled image neighborhood and plot the result value as a function of the
neighborhood scale. Since the signature function measures properties of the local image
neighborhood at a certain radius, it should take a similar qualitative shape if the two
keypoints are centered on corresponding image structures. The only difference will be
that one function shape will be squashed or expanded compared to the other as a result
of the scaling factor between the two images. Thus, corresponding neighborhood sizes
can be detected by searching for extrema of the signature function independently in both
images. If corresponding extrema o and ¢’ are found in both cases, then the scaling
factor between the two images can be obtained as ";/

Effectively, this procedure builds up a scale space (Witkin 1983) of the responses
produced by the application of a local kernel with varying scale parameter o. In order
for this idea to work, the signature function or kernel needs to have certain specific
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Filter scale

Structure size

Figure 3.4: The (scale-normalized) Laplacian-of-Gaussian (LoG) is a popular choice for a
scale selection filter. Its 2D filter mask takes the shape of a circular center region with positive
weights, surrounded by another circular region with negative weights. The filter response is
therefore strongest for circular image structures whose radius corresponds to the filter scale.

properties. It can be shown that the only operator that fulfills all necessary conditions
for this purpose is the scale-normalized Gaussian kernel G(x,0) and its derivatives
(Lindeberg 1994, 1998).

3.2.2.2 The Laplacian-of-Gaussian (LoG) Detector
Based on the above idea, Lindeberg proposed a detector for blob-like features
that searches for scale space extrema of a scale-normalized Laplacian-of-Gaussian

(LoG) (Lindeberg 1998):
Lx,0) = 0°(Li(x,0)+ I,,(x,0)). (3.8)

As shown in Figure 3.4, the LoG filter mask corresponds to a circular center-surround
structure, with positive weights in the center region and negative weights in the sur-
rounding ring structure. Thus, it will yield maximal responses if applied to an image
neighborhood that contains a similar (roughly circular) blob structure at a correspond-
ing scale. By searching for scale-space extrema of the LoG, we can therefore detect
circular blob structures.

Note that for such blobs, a repeatable keypoint location can also be defined as the
blob center. The LoG can thus both be applied for finding the characteristic scale for
a given image location and for directly detecting scale-invariant regions by searching
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Figure 3.5: The Laplacian-of-Gaussian (LoG) detector searches for 3D scale space extrema of
the LoG function. IMAGE SOURCE: Krystian Mikolajczyk
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Figure 3.6: The Difference-of-Gaussian (DoG) provides a good approximation for the
Laplacian-of-Gaussian. It can be efficiently computed by subtracting adjacent scale levels of
a Gaussian pyramid. The DoG region detector then searches for 3D scale space extrema of the
DoG function. FIGURE FROM (Tuytelaars & Mikolajczyk 2007)

for 3D (location + scale) extrema of the LoG. This latter procedure is visualized in
Figure 3.5 and resulting interest regions are shown in Figure 3.7(bottom left).

3.2.2.3 The Difference-of-Gaussian (DoG) Detector

As shown by Lowe (2004), the scale-space Laplacian can be approximated by a
difference-of-Gaussian (DoG) D(x,0), which can be more efficiently obtained from the
difference of two adjacent scales that are separated by a factor of k:

D(x,0) = (G(x,ko)—G(x,0))*I(x) (3.9)

Lowe (2004) shows that when this factor is constant, the computation already includes
the required scale normalization. One can therefore divide each scale octave into an
equal number K of intervals, such that k = 2% and o, = k"0,. For more efficient
computation, the resulting scale space can be implemented with a Gaussian pyramid,
which resamples the image by a factor of 2 after each scale octave.

As in the case of the LoG detector, DoG interest regions are defined as locations
that are simultaneously extrema in the image plane and along the scale coordinate of
the D(x,0) function. Such points are found by comparing the D(x, o) value of each
point with its 8-neighborhood on the same scale level, and with the 9 closest neighbors
on each of the two adjacent levels.




20 CHAPTER 3. LOCAL FEATURES: DETECTION AND DESCRIPTION

Figure 3.7: Example results of the (top left) Hessian detector; (top right) Harris detector;
(bottom left) Laplacian-of-Gaussian detector; (bottom right) Difference-of-Gaussian detector
(IMAGE SOURCE: Krystian Mikolajczyk, bottom right image is from (Tuytelaars & Mikola-
jezyk 2007).).

Since the scale coordinate is only sampled at discrete levels, it is important in
both the LoG and the DoG detector to interpolate the responses at neighboring scales
in order to increase the accuracy of detected keypoint locations. In the simplest version,
this could be done by fitting a second-order polynomial to each candidate point and its
two closest neighbors. A more exact approach was introduced by Brown & Lowe (2002).
This approach simultaneously interpolates both the location and scale coordinates of
detected peaks by fitting a 3D quadric function.

Finally, those regions are kept that pass a threshold ¢ and whose estimated scale
falls into a certain scale range [S,in, Smaz]- The resulting interest point operator reacts
to blob-like structures that have their maximal extent in a radius of approximately
1.60 of the detected points (as can be derived from the zero crossings of the modeled
Laplacian). In order to also capture some of the surrounding structure, the extracted
region is typically larger (most current interest region detectors choose a radius of
r = 30 around the detected points). Figure 3.7(bottom right) shows the result regions
returned by the DoG detector on an example image. It can be seen that the obtained
regions are very similar to those of the LoG detector. In practice, the DoG detector is
therefore often the preferred choice, since it can be computed far more efficiently.
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3.2.2.4 The Harris-Laplacian Detector

The Harris-Laplacian operator (Mikolajczyk & Schmid 2001, 2004) was proposed for
increased discriminative power compared to the Laplacian or DoG operators described
so far. It combines the Harris operator’s specificity for corner-like structures with the
scale selection mechanism by Lindeberg (1998). The method first builds up two separate
scale spaces for the Harris function and the Laplacian. It then uses the Harris function
to localize candidate points on each scale level and selects those points for which the
Laplacian simultaneously attains an extremum over scales.

The resulting points are robust to changes in scale, image rotation, illumination,
and camera noise. In addition, they are highly discriminative, as several comparative
studies show (Mikolajczyk & Schmid 2001, 2003). As a drawback, however, the original
Harris-Laplacian detector typically returns a much smaller number of points than the
Laplacian or DoG detectors. This is not a result of changed threshold settings, but of
the additional constraint that each point has to fulfill two different maxima conditions
simultaneously. For many practical object recognition applications, the lower number
of interest regions may be a disadvantage, as it reduces robustness to partial occlusion.
This is especially the case for object categorization, where the potential number of
corresponding features is further reduced by intra-category variability.

For this reason, an updated version of the Harris-Laplacian detector has been pro-
posed based on a less strict criterion (Mikolajczyk & Schmid 2004). Instead of searching
for simultaneous maxima, it selects scale maxima of the Laplacian at locations for which
the Harris function also attains a maximum at any scale. As a result, this modified de-
tector yields more interest points at a slightly lower precision, which results in improved
performance for applications where a larger absolute number of interest regions is re-
quired (Mikolajczyk et al. 2005).

3.2.2.5 The Hessian-Laplace Detector

As in the case of the Harris-Laplace, the same idea can also be applied to the Hessian,
leading to the Hessian-Laplace detector. As with the single-scale versions, the Hessian-
Laplace detector typically returns more interest regions than Harris-Laplace at a slightly
lower repeatability (Mikolajczyk et al. 2005).

3.2.3 AFFINE COVARIANT REGION DETECTION

The approaches discussed so far yield local features that can be extracted in a man-
ner that is invariant to translation and scale changes. For many practical problems,
however, it also becomes important to find features that can be reliably extracted un-
der large viewpoint changes. If we assume that the scene structure we are interested
in is locally planar, then this would boil down to estimating and correcting for the
perspective distortion a local image patch undergoes when seen from a different view-
point. Unfortunately, such a perspective correction is both computationally expensive
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and error-prone, since the local feature patches typically contain only a small number
of pixels. It has however been shown by a number of researchers (Matas et al. 2002,
Mikolajczyk & Schmid 2004, Schaffalitzky & Zisserman 2002, Tuytelaars & Van Gool
2000, 2004) that a local affine approximation is sufficient in such cases.

We therefore aim to extend the region extraction procedure to affine covariant
regions'. While a scale- and rotation-invariant region can be described by a circle, an
affine deformation transforms this circle to an ellipse. We thus aim to find local regions
for which such an ellipse can be reliably and repeatedly extracted purely from local
image properties.

3.2.3.1 Harris and Hessian Affine Detectors
Both the Harris-Laplace and Hessian-Laplace detectors can be extended to yield affine
covariant regions. This is done by the following iterative estimation scheme. The pro-
cedure is initialized with a circular region returned by the original scale-invariant de-
tector. In each iteration, we build up the region’s second-moment matrix and compute
the eigenvalues of this matrix. This yields an elliptical shape (as shown in Figure 3.2),
corresponding to a local affine deformation. We then transform the image neighborhood
such that this ellipse is transformed to a circle and update the location and scale esti-
mate in the transformed image. This procedure is repeated until the eigenvalues of the
second-moment matrix are approximately equal.

As a result of this iterative estimation scheme, we obtain a set of elliptical regions
which are adapted to the local intensity patterns, so that the same object structures
are covered despite the deformations caused by viewpoint changes.

3.2.3.2 Maximally Stable Extremal Regions (MSER)

A different approach for finding affine covariant regions has been proposed by Matas
et al. (2002). In contrast to the above methods, which start from keypoints and pro-
gressively add invariance levels, this approach starts from a segmentation perspective.
It applies a watershed segmentation algorithm to the image and extracts homogeneous
intensity regions which are stable over a large range of thresholds, thus ending up with
Mazximally Stable Extremal Regions (MSER). By construction, those regions are stable
over a range of imaging conditions and can still be reliably extracted under viewpoint
changes. Since they are generated by a segmentation process, they are not restricted to
elliptical shapes, but can have complicated contours. In fact, the contour shape itself is
often a good feature, which has led to the construction of specialized contour feature
descriptors (Matas et al. 2002). For consistency with the other feature extraction steps
discussed here, an elliptical region can however also easily be fitted to the Maximally
Stable regions by computing the eigenvectors of their second-moment matrices.

1The literature speaks of affine covariant extraction here in order to emphasize the property that extracted
region shapes vary according to the underlying affine deformation. This is required so that the region content
will be invariant.
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3.2.3.3 Other Interest Region Detectors

Several other interest region detectors have been proposed that are not discussed here.
Tuytelaars & Van Gool introduced detectors for affine covariant Intensity Based Regions
(IBR) and Edge Based Regions (EBR) (Tuytelaars & Van Gool 2004). Kadir & Brady
proposed a Salient Regions detector that was later on also extended to affine covariant
extraction (Kadir & Brady 2001, Kadir et al. 2004). An overview over those detectors
and a discussion of their merits can be found in (Tuytelaars & Mikolajczyk 2007).

3.2.4 ORIENTATION NORMALIZATION

After a scale-invariant region has been detected, its content needs to be normalized for
rotation invariance. This is typically done by finding the region’s dominant orientation
and then rotating the region content according to this angle in order to bring the region
into a canonical orientation.

Lowe (2004) suggests the following procedure for the orientation normalization
step. For each detected interest region, the region’s scale is used to select the closest
level of the Gaussian pyramid, so that all following computations are performed in a
scale invariant manner. We then build up a gradient orientation histogram with 36 bins
covering the 360° range of orientations. For each pixel in the region, the corresponding
gradient orientation is entered into the histogram, weighted by the pixel’s gradient
magnitude and by a Gaussian window centered on the keypoint with a scale of 1.5¢.
The highest peak in the orientation histogram is taken as the dominant orientation, and
a parabola is fitted to the 3 adjacent histogram values to interpolate the peak position
for better accuracy.

In practice, it may happen that multiple equally strong orientations are found
for a single interest region. In such cases, selecting only one of them would endanger
the recognition procedure, since small changes in the image signal could cause one of
the other orientations to be chosen instead, which could lead to failed matches. For
this reason, Lowe suggests to create a separate interest region for each orientation peak
that reaches at least 80% of the dominant peak’s value (Lowe 2004). This strategy
significantly improves the region detector’s repeatability at a relatively small additional
cost (according to Lowe (2004), only about 15% of the points are assigned multiple
orientations).

3.2.5 SUMMARY OF LOCAL DETECTORS

Summarizing the above, we have seen the following local feature detectors so far. If
precisely localized points are of interest, we can use the Harris and Hessian detectors.
When looking for scale-invariant regions, we can choose between the LoG or DoG de-
tectors, both of which react to blob-shaped structures. In addition, we can combine the
Harris and Hessian point detectors with the Laplacian scale selection idea to obtain the
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Figure 3.8: Visualization of the SIFT descriptor computation. For each (orientation-
normalized) scale invariant region, image gradients are sampled in a regular grid and are then
entered into a larger 4 x 4 grid of local gradient orientation histograms (for visibility reasons,
only a 2 x 2 grid is shown here). IMAGE SOURCE: DAVID LOWE.

Harris-Laplacian and Hessian-Laplacian detectors. Finally, we can further generalize
those detectors to affine covariant region extraction, resulting in the Harris-Affine and
Hessian-Affine detectors. The affine covariant region detectors are complemented by the
MSER detector, which is based on maximally stable segmentation regions. All of those
detectors have been used in practical applications. Detailed experimental comparisons
can be found in (Mikolajczyk & Schmid 2004, Tuytelaars & Mikolajczyk 2007).

3.3 LOCAL DESCRIPTORS

Once a set of interest regions has been extracted from an image, their content needs
to be encoded in a descriptor that is suitable for discriminative matching. The most
popular choice for this step is the SIFT descriptor (Lowe 2004), which we present in
detail in the following.

3.3.1 THE SIFT DESCRIPTOR

The Scale Invariant Feature Transform (SIFT) was originally introduced by Lowe as
combination of a DoG interest region detector and a corresponding feature descriptor
(Lowe 1999, 2004). However, both components have since then also been used in isola-
tion. In particular, a series of studies has confirmed that the SIF'T descriptor is suitable
for combination with all of the above-mentioned region detectors and that it achieves
generally good performance (Mikolajczyk & Schmid 2005).
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The SIFT descriptor aims to achieve robustness to lighting variations and small
positional shifts by encoding the image information in a localized set of gradient orienta-
tion histograms. The descriptor computation starts from a scale and rotation normalized
region extracted with one of the above-mentioned detectors. As a first step, the image
gradient magnitude and orientation is sampled around the keypoint location using the
region scale to select the level of Gaussian blur (i.e. the level of the Gaussian pyramid
at which this computation is performed). Sampling is performed in a regular grid of
16 x 16 locations covering the interest region. For each sampled location, the gradient
orientation is entered into a coarser 4 x 4 grid of gradient orientation histograms with
8 orientation bins each, weighted by the corresponding pixel’s gradient magnitude and
by a circular Gaussian weighting function with a ¢ of half the region size. The purpose
of this Gaussian window is to give higher weights to pixels closer to the middle of the
region, which are less affected by small localization inaccuracies of the interest region
detector.

This procedure is visualized for a smaller 2 x 2 grid in Figure 3.8. The motivation
for this choice of representation is that the coarse spatial binning allows for small shifts
due to registration errors without overly affecting the descriptor. At the same time,
the high-dimensional representation provides enough discriminative power to reliably
distinguish a large number of keypoints.

When computing the descriptor, it is important to avoid all boundary effects,
both with respect to spatial shifts and to small orientation changes. Thus, when enter-
ing a sampled pixel’s gradient information into the 3-dimensional spatial/orientation
histogram, its contribution should be smoothly distributed among the adjoining his-
togram bins using trilinear interpolation.

Once all orientation histogram entries have been completed, those entries are
concatenated to form a single 4 x 4 x 8 = 128 dimensional feature vector. A final illu-
mination normalization completes the extraction procedure. For this, the vector is first
normalized to unit length, thus adjusting for changing image contrast. Then all feature
dimensions are thresholded to a maximum value of 0.2 and the vector is again normal-
ized to unit length. This last step compensates for non-linear illumination changes due
to camera saturation or similar effects.

3.3.2 THE SURF DETECTOR/DESCRIPTOR

As local feature detectors and descriptors have become more widespread, efficient im-
plementations are getting more and more important. Consequently, several approaches
have been proposed in order to speed up the interest region extraction and/or descrip-
tion stages (N. Cornelis 2008, Bay et al. 2006, 2008, Rosten & Drummond 2008). Among
those, we want to pick out the SURF (“Speeded-Up Robust Features”) approach, which
has been designed as an efficient alternative to SIFT (Bay et al. 2006, 2008).
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Figure 3.9: The SURF detector and descriptor were designed as an efficient alternative to
SIFT. Instead of relying on ideal Gaussian derivatives, their computation is based on simple 2D
box filters, which can be efficiently evaluated using integral images. IMAGE SOURCE: Herbert
Bay
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SURF combines a Hessian-Laplace region detector with its own gradient
orientation-based feature descriptor. Instead of relying on Gaussian derivatives for its
internal computations, it is however based on simple 2D box filters (“Haar wavelets”),
as shown in Figure 3.9. Those box filters approximate the effects of the derivative filter
kernels, but can be efficiently evaluated using integral images (Viola & Jones 2004). In
particular, this evaluation requires the same constant number of lookups regardless of
the image scale, thus removing the need for a Gaussian pyramid. Despite this simplifi-
cation, SURF has been shown to achieve comparable repeatability as detectors based
on standard Gaussian derivatives, while yielding speedups of more than a factor of five
compared to standard DoG.

The SURF descriptor is also motivated by SIFT and pursues a similar spatial
binning strategy, dividing the feature region into a 4 x 4 grid. However, instead of
building up a gradient orientation histogram for each bin, SURF only computes a set
of summary statistics > dz, > |dz|, > dy, and } |dy|, resulting in a 64-dimensional
descriptor, or a slightly extended set resulting in a 128-dimensional descriptor version.

Motivated by the success of SURF, a further optimized version has been pro-
posed by N. Cornelis (2008) that takes advantage of the computational power available
in current CUDA enabled graphics cards. This GPUSURF implementation has been
reported to perform feature extraction for a 640 x 480 image at frame rates up to 200
Hz (i.e. taking only bms per frame), thus making feature extraction a truly affordable
processing step.

3.4 CONCLUDING REMARKS

The first step in the specific-object recognition pipeline is to extract local features
from both the training and test images. For this, we can use any of the feature de-
tectors and descriptors described in this chapter. The appropriate choice of detector
class (single-scale, scale-invariant, or affine-invariant) mainly depends on the type of
viewpoint variations foreseen for the target application.

For many practical recognition applications, scale invariant features (in particular
SIFT (Lowe 2004)) have proven a good compromise, since they are fast to extract, are
robust to moderate viewpoint variations, and retain enough discriminative power to
allow for reliable matching. When dealing with larger viewpoint changes, as in wide-
baseline stereo matching applications, affine invariance becomes important in order to
still establish correspondences. However, the added invariance comes at the price of
reduced discriminative power (since several different elliptical regions can be mapped
onto the same circular descriptor neighborhood) and generally also a smaller number
of features (since not all regions have a characteristic affine-covariant neighborhood).
Whenever possible, it is therefore advisable to use the simpler feature representation.
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The development of local invariant features has had an enormous impact in many
areas of computer vision, including wide-baseline stereo matching, image retrieval, ob-
ject recognition, and categorization. They have provided the basis for many state-of-
the-art algorithms and have led to a number of new developments. Moreover, efficient
implementations for all detectors discussed in this chapter are freely available (Oxf
2004, SUR 2006, GPU 2008), making them truly building blocks that other researchers
can build on.

In the next two chapters, we discuss how to compute candidate matching descrip-
tors, and then describe how the geometric consistency of those candidate matches are
verified to perform specific object recognition. In later chapters we will again draw on
local descriptors to build models for generic object categorization.
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CHAPTER 4

Matching Local Features

In the previous chapter, we saw several specific techniques to detect repeatable interest
points in an image (Section 3.2) and then robustly describe the local appearance at each
such point (Section 3.3). Now, given an image and its local features, we need to be able
to match them to similar-looking local features in other images (e.g., to model images
of the specific objects we are trying to recognize). See Figure 4.1. To identify candidate
matches, we essentially want to search among all previously seen local descriptors, and
retrieve those that are nearest according to Euclidean distance in the feature space
(such as the 128-dimensional “SIFT space”).

Because the local descriptions are by design invariant to rotations, translations,
scalings, and some photometric effects, this matching stage will be able to tolerate
reasonable variations in viewpoint, pose, and illumination across the views of the object.
Further, due to the features’ distinctiveness, if we detect a good correspondence based
on the local feature matches alone, we will already have a reasonable measure of how
likely it is that two images share the same object. However, to strengthen confidence and
eliminate ambiguous matches, it is common to follow the matching process discussed
in this chapter with a check for geometric consistency, as we will discuss in Chapter 5.

The naive solution to identifying local feature matches is straightforward: simply
scan through all previously seen descriptors, compare them to the current input de-
scriptor, and take those within some threshold as candidates. Unfortunately, however,
such a linear-time scan is usually unrealistic in terms of computational complexity. In
many practical applications, one has to search for matches in a database of millions of
features. Thus, efficient algorithms for nearest neighbor or similarity search are crucial.
The focus of this chapter is to describe the algorithms frequently used in the recognition
pipeline to rapidly match local descriptors.!

Specifically, in the first section of this chapter we overview both tree-based algo-
rithms for exact near neighbor search, as well as approximate nearest neighbor algo-
rithms (largely hashing-based) that are more amenable for high-dimensional descrip-
tors. Then, in Section 4.2, we describe a frequently used alternative based on wisual
vocabularies. Instead of performing similarity search in the “raw” vector space of the
descriptors, the vocabulary-based method first quantizes the feature space into discrete
“visual words”, making it possible to index feature matches easily with an inverted file.

n fact, while our focus at this stage is on local feature matching for specific object recognition, most of the
algorithms discussed are quite general and also come into play for other recognition-related search tasks, such
as near-neighbor image retrieval.
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Figure 4.1: The goal when matching local features is to find those descriptors from any pre-
viously seen model (exemplar) that are near in the feature space to those local features in a
novel image (depicted on the left). Since each exemplar image may easily contain on the order
of hundreds to thousands of interest points, the database of descriptors quickly becomes very
large; to make searching for matches practical, the database must be mapped to data structures
for efficient similarity search.

4.1 EFFICIENT SIMILARITY SEARCH

What methods are effective for retrieving descriptors relevant to a new image? The
choice first depends on the dimensionality of the descriptors. For low-dimensional points,
effective data structures for exact nearest neighbor search are known, e.g., kd-trees (Frei-
dman et al. 1977). For high-dimensional points, these methods become inefficient, and so
researchers often employ approximate similarity search methods. This section overviews
examples of both such techniques that are widely used in specific-object matching.

4.1.1 TREE-BASED ALGORITHMS

Data structures using spatial partitions and recursive hyperplane decomposition provide
an efficient means to search low-dimensional vector data exactly. The kd-tree (Freid-
man et al. 1977) is one such approach that has often been employed to match local
descriptors, in several variants (e.g., (Lowe 2004, Beis & Lowe 1997, Muja & Lowe
2009, Silpa-Anan & Hartley 2008)). The kd-tree is a binary tree storing a database



4.1. EFFICIENT SIMILARITY SEARCH 31

of k-dimensional points in its leaf nodes. It recursively partitions the points into axis-
aligned cells, dividing the points approximately in half by a line perpendicular to one
of the k coordinate axes. The division strategies aim to maintain balanced trees and/or
uniformly shaped cells—for example, by choosing the next axis to split according to
that which has the largest variance among the database points, or by cycling through
the axes in order.

To find the point nearest to some query, one traverses the tree following the same
divisions that were used to enter the database points; upon reaching a leaf node, the
points found there are compared to the query. The nearest one becomes the “current
best”. While the point is nearer than others to the query, it need not be the absolute
nearest (for example, consider a query occurring near the initial dividing split at the
top of the tree, which can easily be nearer to some points on the other side of the
dividing hyperplane). Thus, the search continues by backtracking along the unexplored
branches, checking whether the circle formed about the query by the radius given by
the current best match intersects with a subtree’s cell area. If it does, that subtree
is considered further, and any nearer points found as the search recurses are used to
update the current best. If not, the subtree can be pruned. See Figure 4.2 for a sketch
of an example tree and query.

The procedure guarantees that the nearest point will be found.? Constructing the
tree for N database points (an offline cost for a single database) requires O(N log N)
time. Inserting points requires O(log N) time. Processing a query requires O(N'~#)
time, and the algorithm is known to be quite effective for low-dimensional data (i.e.,
fewer than 10 dimensions).

In high-dimensional spaces, however, the algorithm ends up needing to visit many
more branches during the backtracking stage, and in general degrades to worst case
linear scan performance in practice. The particular behavior depends not only on the
dimension of the points, but also the distribution of the database examples that have
been indexed, combined with the choices in how divisions are computed.

Other types of tree data structures can operate with arbitrary metrics (Uhlmann
1991, Ciaccia et al. 1997), removing the requirement of having data in a vector space
by exploiting the triangle inequality. However, similar to kd-trees, the metric trees in
practice rely on good heuristics for selecting useful partitioning strategies, and, in spite
of logarithmic query times in the expectation, also degenerate to a linear time scan of
all items depending on the distribution of distances for the data set.

Since high-dimensional image descriptors are commonly used in object recogni-
tion, several strategies to mitigate these factors have been explored. One idea is to relax
the search requirement to allow the return of approrimate nearest neighbors, using a
variant of kd-trees together with a priority queue (Arya et al. 1998, Beis & Lowe 1997).

2Range queries and k-nn queries are also supported.
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Figure 4.2: Sketch of kd-tree processing. (a) The database points are entered into a binary tree,
where each division is an axis-aligned hyperplane. (b) Given a new query (red point) for which
we wish to retrieve the nearest neighbor, first the tree is traversed, choosing the left or right
subtree at each node according to the query’s value in the coordinate along which this division
was keyed. The green dotted box denotes the cell containing the points in the leaf node reached
by this query. (¢) At this point we know the current best point is that in the leaf node that
is closest to the query, denoted with the outer red circle. (d) Then we backtrack and consider
the other branch at each node that was visited, checking if its cell intersects the “current best”
circle around the query. (e) If so, its subtree is explored further, and the current best radius is
updated if a nearer point is found. (f) Continue, and prune subtrees once a comparison at its
root shows that it cannot improve on the current nearest point. FIGURE ADAPTED FROM
SLIDES BY AUTONLAB, CMU.

Another idea is to generate multiple randomized kd-trees (e.g., by sampling splits ac-
cording to the coordinates’ variance), and then process the query in all trees using a
single priority queue across them (Silpa-Anan & Hartley 2008). Given the sensitivity
of the algorithms to the data distribution, some recent work also attempts to automat-
ically select algorithm configurations and parameters for satisfactory performance by
using a cross-validation approach (Muja & Lowe 2009). Another interesting direction
pursued for improving the efficiency and effectiveness of tree-based search involves inte-
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grating learning or the matching task into the tree construction, for example by using
decision trees in which each internal node is associated with a weak classifier built with
simple measurements from the feature patches (Lepetit et al. 2005, Obdrzalek & Matas
2005).

4.1.2 HASHING-BASED ALGORITHMS AND BINARY CODES

Hashing algorithms are an effective alternative to tree-based data structures. Motivated
by the inadequacy of existing ezxact nearest-neighbor techniques to provide sub-linear
time search for high-dimensional data (including the kd-tree and metric tree approaches
discussed above), randomized approximate hashing-based similarity search algorithms
have been explored. The idea in approximate similarity search is to trade off some pre-
cision in the search for the sake of substantial query time reductions. More specifically,
guarantees are of the general form: if for a query point q there exists a database point
@ such that d(q,z) < r for some search radius r, then, with high probability a point
@’ is returned such that d(q,x) < (1 + €)r. Otherwise, the absence of such a point is
reported.?

4.1.2.1 Locality Sensitive Hashing
Locality-sensitive hashing (LSH)(Indyk & Motwani 1998, Gionis et al. 1999, Charikar
2002, Datar et al. 2004) is one such algorithm that offers sub-linear time search by
hashing highly similar examples together in a hash table. The idea is that if one can
guarantee that a randomized hash function will map two inputs to the same bucket
with high probability only if they are similar, then, given a new query, one needs only
to search the colliding database examples to find those that are most probable to lie in
the input’s near neighborhood.* The search is approximate, however, and one sacrifices
a predictable degree of error in the search in exchange for a significant improvement in
query time.
More formally, a family of LSH functions F is a distribution of functions where
for any two objects x; and x;,
hfe’l} [h(z;) = h(x;)] = sim(x;, x;), (4.1)
where sim(x;, x;) € [0,1] is some similarity function, and h(x) is a hash function drawn
from F that returns a single bit (Charikar 2002). Concatenating a series of b hash
functions drawn from F yields b-dimensional hash keys. When h(z;) = h(x;), =; and
x; collide in the hash table. Because the probability that two inputs collide is equal
to the similarity between them, highly similar objects are indexed together in the hash
3Variants of this guarantee for nearest neighbors (rather than r-radius neighbors) also exist.
4Locality sensitive hashing has been formulated in two related contexts—one in which the likelihood of collision
is guaranteed relative to a threshold on the radius surrounding a query point (Indyk & Motwani 1998), and

another where collision probabilities are equated with a similarity function score (Charikar 2002). We use the
latter definition here.
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Figure 4.3: Overview of locality-sensitive hashing. If hash functions guarantee a high proba-
bility of collision for features that are similar under a metric of interest, one can search a large
database in sub-linear time via locality sensitive hashing techniques (Indyk & Motwani 1998,
Charikar 2002). A list of k£ hash functions h,,,...,h,, are applied to map N database images
to a hash table where similar items are likely to share a bucket. After hashing a query Q, one
must only evaluate the similarity between Q and the database examples with which it collides
to obtain the approximate near-neighbors.

table with high probability. On the other hand, if two objects are very dissimilar, they
are unlikely to share a hash key (see Figure 4.3). At query time, one maps the query to its
hash bucket, pulls up any database instances also in that bucket, and then exhaustively
searches only those (few) examples. In practice, multiple hash tables are often used,
each with independently drawn hash functions, and the query is compared against the
union of the database points to which it hashes in all tables.

Given valid LSH functions, the query time for retrieving (1 + €)-near neighbors is
bounded by O(N'/(+9) for the Hamming distance and a database of size N (Gionis
et al. 1999). One can therefore trade off the accuracy of the search with the query
time required. Early LSH functions were developed to accommodate the Hamming
distance (Indyk & Motwani 1998), inner products (Charikar 2002), and ¢, norms (Datar
et al. 2004). These methods were quickly adopted by vision researchers for a variety of
image search applications (Shakhnarovich et al. 2006).

Since meaningful image comparisons for recognition often demand richer com-
parison measures, work in the vision community has developed novel locality-sensitive
hash functions for additional classes of metrics. For example, an embedding of the
normalized partial matching between two sets of local features is given in (Grauman
& Darrell 2007a) that allows sub-linear time hashing for the pyramid match kernel
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(see Section 10.2.1.1 below). A related form of hashing computes sketches of feature
sets and allows search according to the sets’ overlap (Broder 1998); this “Min-Hash”
framework has been demonstrated and extended for near-duplicate detection and image
search in (Chum et al. 2008). Most recently, a kernelized form of LSH (KLSH) is pro-
posed in (Kulis & Grauman 2009), which makes it possible to perform locality-sensitive
hashing for arbitrary kernel functions. Results are shown for various kernels relevant
to object recognition, including the x? kernel that is often employed for comparing
bag-of-words descriptors (to be defined below).

Aside from widening the class of metrics and kernels supportable with LSH,
researchers have also considered how to integrate machine learning elements so that
the hash functions are better suited for a particular task. For object recognition, this
means that one wants hash functions that are more likely to map instances of the
same object to the same hash buckets, or, similarly, patch descriptors from the same
real-world object point to the same bucket. For example, Parameter Sensitive Hashing
(PSH) (Shakhnarovich et al. 2003) is an LSH-based algorithm that uses boosting to
select hash functions that best reflect similarity in a parameter space of interest. Semi-
supervised hash functions make it possible to efficiently index data according to learned
distances (Jain et al. 2008, Kulis et al. 2009, C. Strecha & Fua 2010, Wang, Kumar
& Chang 2010). Typically, supervision is given in the form of similar and dissimilar
pairs of instances, and then while the metric learning algorithm updates its parameters
to best capture those constraints, the hash functions’ parameters are simultaneously
adjusted.

4.1.2.2 Binary Embedding Functions

Embedding functions are a related mechanism that are used to map expensive dis-
tance functions into something more manageable computationally. Either constructed
or learned, these embeddings aim to approximately preserve the desired distance func-
tion when mapping to a very low-dimensional space that is more easily searchable
with known techniques. Informally, given an original feature space X and associ-
ated distance function dy, the basic idea is to designate a function f: X — £ that
maps the inputs into a new space £ with associated distance dg in such a way that
de(f(x), f(y)) = dx(x,y), for any ,y € X. Often the target space for the embedding
is the Hamming space. Such binary codes have the advantages of requiring minimal
memory, are able to exploit fast bit counting routines for the Hamming distance, and
can be indexed directly using the computer’s memory addresses.

Work in the vision and learning community has developed useful embedding func-
tions that aim to preserve a variety of similarity metrics with simple low-dimensional
binary codes. For example, the BoostMap (Athitsos et al. 2004) and Boosted Similar-
ity Sensitive Coding (BoostSSC) (Shakhnarovich 2005) algorithms learn an embedding
using different forms of boosting, combining multiple weighted 1D embeddings so as to
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preserve the proximity structure given by the original distance function. Building on this
notion, more recent work develops Semantic Hashing algorithms that train embedding
functions using boosting or multiple layers of restricted Boltzmann machines (Salakhut-
dinov & Hinton 2007, Torralba et al. 2008); results show the impact for searching Gist
image descriptors (Torralba et al. 2008). Embeddings based on random projections have
also been explored for shift-invariant kernels, which includes a Gaussian kernel (Ragin-
sky & Lazebnik 2009).

Such methods are related to LSH in the sense that both seek small “keys” that
can be used to encode similar inputs, and often these keys exist in Hamming space.
However, note that while hash functions also typically map the data to binary strings
(the “hash keys”), in that case the codes serve to insert instances into buckets, whereas
technically the embedding function outputs are treated as a new feature space in which
to perform the similarity search.

4.1.3 A RULE OF THUMB FOR REDUCING AMBIGUOUS MATCHES

When matching local feature sets extracted from real-world images, many features will
stem from background clutter and will therefore have no meaningful neighbor in the
other set. Other features lie on repetitive structures and may therefore have ambiguous
matches (for example, imagine an image containing a building with many identical
windows). Hence, one needs to find a way to distinguish reliable matches from unreliable
ones. This cannot be done based on the descriptor distance alone, since some descriptors
are more discriminative than others.

An often-used strategy (initially proposed by Lowe (2004)) is to consider the ratio
of the distance to the closest neighbor to that of the second-closest one as a decision
criterion. Specifically, we identify the nearest neighbor local feature originating from
an exemplar in the database of training images, and then consider the second nearest
neighbor that originates from a different object than the nearest neighbor feature. If
the ratio of the distance to the first neighbor over the distance to the second neighbor is
relatively large, this is a sign that the match may be ambiguous. Similarly, if the ratio
is low, it suggests that it is a reliable match. This strategy effectively penalizes features
that come from a densely populated region of feature space and that are therefore more
ambiguous. By comparing the probability density functions of correct and incorrect
matches in quantitative experiments, Lowe arrives at the recommendation to reject
all matches in which the distance ratio is greater than 0.8, which in his experiments
eliminated 90% of the false matches while discarding less than 5% correct matches
(Lowe 2004).
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4.2 INDEXING FEATURES WITH VISUAL VOCABULARIES

In this section we overview the concept of a visual vocabulary—a strategy that draws
inspiration from the text retrieval community and enables efficient indexing for local
image features. Rather than preparing a tree or hashing data structure to aid in direct
similarity search, the idea is to quantize the local feature space. By mapping the local
descriptors to discrete tokens, we can then “match” them by simply looking up features
assigned to the identical token.

In the following, we first describe the formation of visual words (Sections 4.2.1
through 4.2.3), and then describe their utility for indexing (Section 4.2.4). Note that
we will return to this representation later in Section 8.1 in the context of object catego-
rization, as it is the basis for the simple but effective “bag-of-words” image descriptor.

4.2.1 CREATING A VISUAL VOCABULARY

Methods for indexing and efficient retrieval with text documents are mature, and ef-
fective enough to operate with millions or billions of documents at once (Baeza-Yates
& Ribeiro-Neto 1999). Documents of text contain some distribution of words, and thus
can be compactly summarized by their word counts (known as a bag-of-words). Since
the occurrence of a given word tends to be sparse across different documents, an index
that maps words to the files in which they occur can map a keyword query directly to
potentially relevant content. For example, if we query a document database with the
word “car”, we should immediately eliminate the many documents that never mention
the word “car”.

What cues, then, can one take from text processing to aid visual search? An
image is a sort of document, and (using the representations introduced in Chapter 3) it
contains a set of local feature descriptors. However, at first glance, the analogy would
stop there: text words are discrete “tokens”, whereas local image descriptors are high-
dimensional, real-valued feature points. How could one obtain discrete “visual words”?

To do so, we must impose a quantization on the feature space of local image
descriptors. That way, any novel descriptor vector can be coded in terms of the (dis-
cretized) region of feature space to which it belongs. The standard pipeline to form a
so-called “visual vocabulary” consists of (1) collecting a large sample of features from
a representative corpus of images, and (2) quantizing the feature space according to
their statistics. Often simple k-means clustering is used to perform the quantization;
one initializes the k cluster centers with randomly selected features in the corpus, and
then iterates between updating each point’s cluster membership (based on which clus-
ter center it is nearest to) and updating the k& means (based on the mean of the points
previously assigned to each cluster). In that case, the visual “words” are the k cluster
centers, and the size of the vocabulary k is a user-supplied parameter. Once the vo-
cabulary is established, the corpus of sampled features can be discarded. Then a novel
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Figure 4.4: A schematic to illustrate visual vocabulary construction and word assignment. (a)
A large corpus of representative images are used to populate the feature space with descriptor
instances. The white ellipses denote local feature regions, and the black dots denote points
in some feature space, e.g., SIFT. (b) Next the sampled features are clustered in order to
quantize the space into a discrete number of visual words. The visual words are the cluster
centers, denoted with the large green circles. The dotted green lines signify the implied Voronoi
cells based on the selected word centers. (¢) Now, given a new image, the nearest visual word is
identified for each of its features. This maps the image from a set of high-dimensional descriptors
to a list of word numbers. (d) A bag-of-visual-words histogram can be used to summarize the
entire image (see Section 8.1). It counts how many times each of the visual words occurs in the
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Figure 4.5: Four examples of visual words. Each group shows instances of patches that are
assigned to the same visual word. IMAGES FROM SIVIC ICCV 2003

image’s features can be translated into words by determining which visual word they
are nearest to in the feature space (i.e., based on the Euclidean distance between the
cluster centers and the input descriptor). See Figure 4.4 for a diagram of the procedure.

Drawing inspiration from text retrieval methods, Sivic and Zisserman proposed
quantizing local image descriptors for the sake of rapidly indexing video frames with an
inverted file (Sivic & Zisserman 2003). They showed that local descriptors extracted at
interest points could be mapped to visual words by computing prototypical descriptors
with k-means clustering, and that having these tokens enabled faster retrieval of frames
containing the same words. Furthermore, they showed the potential of exploiting a term
frequency-inverse document frequency weighting on the words, which de-emphasizes
those words that are common to many images and thus possibly less informative, and
a stop-list, which ignores extremely frequent words that appear in nearly every image
(analogous to “a” or “the” in text).

What will a visual word capture? The answer depends on several factors, including
what corpus of features is used to build the vocabulary, the number of words selected,
the quantization algorithm used, and the interest point or sampling mechanism chosen
for feature extraction. Intuitively, the larger the vocabulary, the more fine-grained the
visual words. In general, patches assigned to the same visual word should have simi-
lar low-level appearance (see Figure 4.5). Particularly when the vocabulary is formed
in an unsupervised manner, there are no constraints that the common types of local
patterns be correlated with object-level parts. However, in later chapters we will see
some methods that use visual vocabularies or codebooks to provide candidate parts to
a part-based category model.

4.2.2 VOCABULARY TREES
The discussion above assumes a flat quantization of the feature space, but many current
techniques exploit hierarchical partitions (Nister & Stewenius 2006, Grauman & Darrell
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2005, 2006, Moosmann et al. 2006, Yeh et al. 2007, Bosch et al. 2007a). In particular,
the vocabulary tree approach (Nister & Stewenius 2006) uses hierarchical k-means to re-
cursively subdivide the feature space, given a choice of the branching factor and number
of levels. Vocabulary trees offer a significant advantage in terms of the computational
cost of assigning novel image features to words—from linear to logarithmic in the size
of the vocabulary. This in turn makes it practical to use much larger vocabularies (e.g.,
on the order of one million words).

Experimental results suggest that these more specific words (smaller quantized
bins) are particularly useful for matching features for specific instances of objects (Nis-
ter & Stewenius 2006, Philbin et al. 2007, 2008). Since quantization entails a hard-
partitioning of the feature space, it can also be useful in practice to use multiple ran-
domized hierarchical partitions, and/or to perform a soft assignment in which a feature
results in multiple weighted entries in nearby bins.

4.2.3 CHOICES IN VOCABULARY FORMATION

An important concern in creating the visual vocabulary is the choice of data used to
construct it. Generally researchers report that the most accurate results are obtained
when using the same data source to create the vocabulary as is going to be used for the
classification or retrieval task. This can be especially noticeable when the application is
for specific-level recognition rather than generic categorization. For example, to index
the frames from a particular movie, the vocabulary made from a sample of those frames
would be most accurate; using a second movie to form the vocabulary should still
produce meaningful results, though likely weaker accuracy. When training a recognition
system for a particular set of categories, one would typically sample descriptors from
training examples covering all categories to try and ensure good coverage. That said,
with a large enough pool of features taken from diverse images (admittedly, a vague
criterion), it does appear workable to treat the vocabulary as “universal” for any future
word assignments.

Furthermore, researchers have developed methods to inject supervision into the
vocabulary (Winn et al. 2005, Perronnin et al. 2006, Moosmann et al. 2006), and even
to integrate the classifier construction and vocabulary formation processes (Yang et al.
2008). In this way, one can essentially learn an application-specific vocabulary.

The choice of feature detector or interest operator will also have notable impact
on the types of words generated. Factors to consider are (1) the invariance properties
required, (2) the type of images to be described, and (3) the computational cost al-
lowable. Using an interest operator (e.g., a DoG detector) yields a sparse set of points
that is both compact and repeatable due to the detector’s automatic scale selection.
For specific-level recognition (e.g., identifying a particular object or landmark build-
ing), these points can also provide an adequately distinct description. A common rule
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Figure 4.6: Main idea of an inverted file index for images represented by visual words.

of thumb is to use multiple complementary detectors; that is, to combine the outputs
from a corner-favoring interest operator with those from a blob-favoring interest oper-
ator. See Section 8.1.4 of Chapter 8 for a discussion of visual word representations and
choices for category-level recognition.
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4.2.4 INVERTED FILE INDEXING

Visual vocabularies offer a simple but effective way to index images efficiently with an
inverted file. An inverted file index is just like an index in a book, where the keywords
are mapped to the page numbers where those words are used. In the visual word case,
we have a table that points from the word number to the indices of the database images
in which that word occurs. For example, in the cartoon illustration in Figure 4.6, the
database is processed and the table is populated with image indices in part (a); in part
(b), the words from the new image are used to index into that table, thereby directly
retrieving the database images that share its distinctive words.

Retrieval via the inverted file is faster than searching every image, assuming that
not all images contain every word. In practice, an image’s distribution of words is indeed
sparse. Since the index maintains no information about the relative spatial layout of
the words per image, typically a spatial verification step is performed on the images
retrieved for a given query, as we discuss in detail in the following chapter.

4.3 CONCLUDING REMARKS

In short, the above methods offer ways to reduce the computational cost of finding
similar image descriptors within a large database. While certainly crucial to practical
applications of specific object recognition based on local features (the focus of this
segment of the lecture), they are also commonly used for other search problems ranging
from image retrieval to example-based category recognition, making this section also
relevant to generic category algorithms that we will discuss starting in Chapter 7.

Which matching algorithm should be used when? The tree or hashing algorithms
directly perform similarity search, offering the algorithm designer the most control on
how candidate matches are gathered. In contrast, a visual vocabulary corresponds to a
fixed quantization of a vector space, and lacks such control. On the other hand, a visual
vocabulary approach has the ability to compactly summarize all local descriptors in an
image or window, allowing a fast check for overall agreement between two images. In
general, the appropriate choice for an application will depend on the similarity metric
that is required for the search, the dimensionality of the data, the available online
memory, and the offline resources for data structure setup or other overhead costs.

At this point, we have shown how to detect, describe, and match local features.
Good local feature matches between images can alone suggest a specific object has
been found; however, to discount spurious matches or to recognize an object from very
sparse local features, it is important to also perform a geometric verification stage
(see Figure 4.7). Thus, the following chapter closes our discussion of specific object
recognition with techniques to verify spatial consistency of the matches.
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(b) Candidate matches must next be verified for geometric consistency.

Figure 4.7: The candidate feature matches established using the methods described in this
chapter may strongly suggest whether a specific object is present, but are typically verified for
geometric consistency. In this example, the good appearance matches found in the top right
example can be discarded once we find they do not fit a geometric transformation well, whereas
those found in the top left example will check out in terms of both appearance and geometric
consistency. FIGURE FROM SLIDES BY ONDREJ CHUM.
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CHAPTER 5

Geometric Verification of Matched
Features

Once a set of feature matches has been established, the next step is to verify if those
matches also occur in a consistent geometric configuration. By this we mean that the
locations and scales of corresponding features in both images are related by a common
geometric transformation. The existence of such a transformation can be motivated by
the assumption that we observe the same rigid object in both images. If the entire
change in the observed feature configurations is caused by a well-defined change of the
observing camera (plus some noise), then we should be able to estimate the underlying
transformation given enough correspondences. This is examined in detail in Section 5.1.
The influences of noise and outliers cause additional problems. Those are dealt with
using robust estimation techniques described in Section 5.2.

5.1 ESTIMATING GEOMETRIC MODELS

We seek to express the allowed change between two corresponding feature configurations
by an element of the family of linear transformations. Figure 5.1 shows the different
levels of linear geometric transformations that are available to us in the image plane.
Starting with the square on the far left, the simplest transformation is a pure trans-
lation. Adding also a rotation, we arrive at a Fuclidean transformation, and adding
a scale change we get a similarity transformation. At this point, the transformation
still preserves angles, parallel lines, and distance ratios. This changes when we move to
affine transformations, which introduce non-uniform scaling and skew and only preserve
parallelism and volume ratios. At the far right end, we see the effect of a projective trans-
formation, which only preserves intersection and tangency. A projective transformation
of a plane onto another plane is called a homography.

Depending on the application and the assumptions we can make about the ob-
served scene, different levels of transformations may be suitable. In the following, we
therefore derive methods for estimating similarity transformations, affine transforma-
tions, and homographies. In all cases, we make the assumption that all feature corre-
spondences are correct (meaning that we do not have to deal with outliers yet), but
may be subject to noise.

For the following derivations, it is often convenient to work in homogeneous co-
ordinates, which make it possible to express a translation and projection as a single
matrix operation. In homogeneous coordinates, each point vector is extended by an
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Figure 5.1: The different levels of geometric transformations FIGURE SOURCE: Krystian
Mikolajczyk.

additional coordinate w, e.g. x = (x,y,w). If w = 0, then the point lies on the plane at
infinity; else, the point location in ordinary Cartesian coordinates can be obtained by
dividing each coordinate by w, i.e. (z/w,y/w).

5.1.1 ESTIMATING SIMILARITY TRANSFORMATIONS

A similarity transformation can already be hypothesized from a single, scale- and
rotation-invariant interest region observed in both images. Let f4 = (x4,y4,04,54)
and fp = (zp,yp,0p5,55) be the two corresponding regions with center coordinates
(x,y), rotation € and scale s. Then we can obtain the transformation from A to B in
homogenous coordinates as

dscosdfd —sindf dx illx i xB:xA
Taim = sindl  dscosdf dy |, where y= Ys—Ya (5.1)
dd = 05 —04
0 0 1
ds = sp/sa

If only feature locations are available, we require at least two point correspon-
dences. Then we can compute the two vectors between point pairs in the same image
and we obtain T, as the transformation that projects one such vector onto its corre-
sponding vector in the other image.

5.1.2 ESTIMATING AFFINE TRANSFORMATIONS

Similar to the above, an affine transformation can already be obtained from a single
affine covariant region correspondence. Recall from Chapter 3 that for estimating the
elliptical region shape, we had to compute the region’s second-moment matrix M. The
transformation that projects the elliptical region onto a circle is given by the square
root of this matrix M'/2. We can thus obtain the transformation from region fi =
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(xa,ya,04,M4) onto region fp = (xp,ys,05,Mp) by first projecting f4 onto a circle,
rotating it according to df = g — 04 and then projecting the rotated circle back onto
fB- This leads to the following transformation:

cosdf —sindf 0
T.e = M5 °RMY?, with R= | sindd cosdd 0 |. (5.2)
0 0 1

Alternatively, we can estimate the affine transformation from three or more (non-
collinear) point correspondences. If more than three such correspondences are available,
we can use all of them in order to counteract the influence of noise and obtain a more
accurate transformation estimate. This is done as follows. We start by writing down
the affine transformation we want to estimate (in non-homogeneous coordinates). This
transformation is given by a 2 x 2 matrix M and a translation vector t, such that

Xxp = Mxy+ ¢t
x mi; m T t
R 63
Yp ms 1My Ya lo
We can now collect the unknown parameters into one vector b = [my, mq, ms, my, t1,ts] "
and write the equation in matrix form for a number of point correspondences x4, and
XB;:

Ab - XB
oy
mo
Ta, Ya, 0 0 1 0 ms o B,
00 0 aa ya 0 1| |mi| | ys | (5:4)
131
12

If we have exactly three point correspondences, A will be square and we can obtain
the solution from its inverse as b = A~!X . If more than three correspondences are
available, we can solve the equation by building the pseudo-inverse of A:

b=(ATA)'ATXpz =ATXp. (5.5)

It can be shown that this solution minimizes the estimation error in the least-squares
sense. The results of an affine estimation procedure on a real-world recognition example
are shown in Figure 5.2.

5.1.3 HOMOGRAPHY ESTIMATION
A homography, i.e. a projection of a plane onto another plane, can be estimated from
at least four point correspondences. When using more than four correspondences, this
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Figure 5.2: Example results of affine transformation estimation for recognition: (top left)

model images; (bottom left) test image; (right) estimated affine models and supporting features.
FIGURE SOURCE: DAVID LOWE.

again has the advantage that we can smooth out noise by searching for a least-squares
estimate. Compared to the affine estimation above, the estimation becomes a bit more
complicated, since we now need to work with projective geometry. We can do that by
using homogeneous coordinates. The homography transformation from a point x4 to
its counterpart xp can then be written as follows:

Xp = oXp with X = Hxyu
B
TB 3333 xjg hiv hiz hs T A (5.6)
YB = i Yp Yp = hor  hos  hog Ya
1 Zp 2p hsr hg 1 1

The simplest way to estimate a homography from feature correspondences is the Di-
rect Linear Transformation (DLT) method (Hartley & Zisserman 2004). Using several
algebraic manipulations, this method sets up a similar estimation procedure as above,
resulting in the following matrix equation for the homography parameters h:

Ah =0
hll
h12
g, Yp, 1 O 0 0 —za,xB, —TaYs —Ta, ||his 0
0 0 0 zp, ys 1 —yaTs, —Yays —Ya, ||ha 0
hoo | = | .| (5.7)
has
s
hsa
1
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The solution to this equation is the null-space vector of A. This can be obtained by
computing the singular value decomposition (SVD) of A, where the solution is given by
the singular vector corresponding to the smallest singular value. The SVD of A results
in the following decomposition:

dll oo 0 Ull .. ’L)lg
A=UDVI =U| @ . S (5.8)

0 -+ doo Vo1 -+ Ugg

and the solution for h is given by the last column of V'. As above, this solution minimizes
the least-squares estimation error.

Since the homography has only 8 degrees of freedom, we are free to bring the result
vector into a canonical form by an appropriate normalization. This could be done by
normalizing the result vector by its last entry:

[Ulga e ,Ugg]

Vg9

h= (5.9)
Although this procedure is often used, it is problematic, since vgg may also be zero. Hart-
ley & Zisserman (2004) therefore recommend to normalize the vector length instead,
which avoids this problem:

[Ulga e ,Ugg]

HU197~~~,U99” .

h = (5.10)
It should be noted that there are also several more elaborate estimation procedures
based on nonlinear optimizations. For those, we however refer the reader to the detailed
treatment in (Hartley & Zisserman 2004).

5.1.4 MORE GENERAL TRANSFORMATIONS
The transformations discussed in this section can also be interpreted in terms of the
camera models they afford. Affine transformations can only describe the effects of affine
cameras, a simplified camera model that only allows for orthographic or parallel pro-
jection. They are a suitable representation if the effects of perspective distortion are
small, such as when the object of interest is far away from the camera and its extent in
depth is comparatively small. Affine transformations can also be used to approximate
the effects of perspective projection for small regions, such as the local neighborhood
of an interest region.

In order to describe the effects of general perspective cameras, a projective trans-
formation is needed. Section 5.1.3 presented an approach for estimating homographies,
which capture the perspective projection of a planar surface. In the case of a more
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general 3D scene, homographies are no longer sufficient, and we need to check if the
point correspondences are consistent with an epipolar geometry.

If the internal camera calibration is known, the corresponding constraints can be
expressed by the so-called essential matriz, which captures the rigid 6D transforma-
tion (3D translation + 3D rotation) of the camera with respect to a static scene. The
essential matrix can be estimated from 5 correspondence pairs. If the internal camera
calibration is unknown, we need to estimate the fundamental matriz, which can be
estimated from 7 correspondence pairs using a non-linear approach or from 8 corre-
spondence pairs using a linear approach. Although those constraints are routinely used
in 3D reconstruction, they are however only rarely used for object recognition, since
their estimation is generally less robust. We therefore do not cover them here and refer
to (Hartley & Zisserman 2004) for details.

5.2  DEALING WITH OUTLIERS

The assumption that all feature correspondences are correct rarely holds in practice.
In real-world problems, we often have to deal with a large fraction of outlier corre-
spondences, i.e. correspondences that are not explained by the chosen transformation
model. These outliers can stem from two sources: they can either be caused by wrong
or ambiguous feature matches, or they can be due to correct matches that are just not
explained by an overly simplistic transformation model (e.g. if an affine transformation
model is used to approximate a projective transformation). In both cases, the net effect
is the same, namely that the transformed location of a point from one image projected
into the other image differs from its correspondence location in that image by more
than a certain tolerance threshold.

The problem with outliers is that they can lead to arbitrarily wrong estimation
results in connection with least-squares estimation. Imagine a simple estimation problem
of finding the best-fitting line given a sample of data points. If we use a least-squares
error criterion, then moving a single data point sufficiently far away from the correct
line will bias the estimated solution towards this point and may move the estimation
result arbitrarily far from the desired solution. The same thing will happen with all
transformation methods discussed in Section 5.1, since they are also based on least-
squares estimation.

In order to obtain robust estimation results, it is therefore necessary to limit
the effect of outliers on the obtained solution. For this, we can use the property that
the correct solution will result in consistent transformations for all inlier data points,
while any incorrect solution will generally only be supported by a smaller, random
subset of data points. The recognition task thus boils down to finding a consistent
transformation together with a maximal set of inliers supporting this transformation.
In the following, we will present two popular approaches for this task: RANSAC and the




50 CHAPTER 5. GEOMETRIC VERIFICATION OF MATCHED FEATURES

Figure 5.3: Visualization of the RANSAC procedure for a simple problem of fitting lines to
a dataset of points in 2D. In each iteration, a minimal set of two points is sampled to define a
line, and the number of inlier points within a certain distance to this line is taken as its score.
In the shown example, the hypothesis on the left has 7 inliers, while the one on the right has
11, making it a better explanation for the observed data FIGURE SOURCE = ?

Generalized Hough Transform. Both approaches have been successfully used for real-
world estimation problems in the past. We will then briefly compare the two estimation
schemes and discuss their relative advantages and disadvantages.

5.2.1 RANSAC

RANSAC or RAndom SAmple Consensus (Fischler & Bolles 1981) has become a pop-
ular tool for solving geometric estimation problems in datasets containing outliers.
RANSAC is a non-deterministic algorithm that operates in a hypothesize-and-test
framework. Thus, it only returns a “good” result with a certain probability, but this
probability increases with the number of iterations.

Given a set of tentative correspondences, RANSAC randomly samples a minimal
subset of m correspondences from this set in order to hypothesize a geometric model
(e.g. using any of the techniques described in Section 5.1). This model is then verified
against the remaining correspondences, and the number of inliers is determined as its
score. This process is iterated until a termination criterion is met. Thus, the RANSAC
procedure can be summarized as follows:

1. Sample a minimal subset of m correspondences.
2. Estimate a geometric model T from these m correspondences.

3. Verify the model T against all remaining correspondences and calculate the number
of inliers 1.

4. If I > I*, store the new model T* <— T, together with its number of inliers I* < I.

5. Repeat until the termination criterion is met (see below).
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Algorithm 1 RANSAC

k<« 0,e+ m/N, I*+ 0

while 7= (1—¢m)" >n, do
Sample m random correspondences.
Compute a model T from these samples.
Compute the number [ of inliers for T.
if I >1* then

I* < 1,e« I*/N, store T.

end if
k< k+1.

end while

The RANSAC procedure is visualized in Figure 5.3 for an example of fitting lines
to a set of points in the plane. For this kind of problem, the size of the minimal sample
set is m = 2, i.e. two points are sufficient to define a line in 2D. In each iteration, we
thus sample two points to define a line and we determine the number of inliers to this
model by searching for all points within a certain distance to the line. In the example
in Figure 5.3, the hypothesis on the left has 7 inliers, while the one on the right has 11
inliers. Thus, the second hypothesis is a better explanation for the observed data and
will replace the first one if chosen in the random sampling procedure.

In the above example, RANSAC is applied to the task of finding lines in 2D. Note,
however, that RANSAC is not limited to this task, but can be applied to arbitrary
transformation models, including those derived in Section 5.1. In such a case, we define
inliers to be those points whose transformation error, i.e. the distance of the transformed
point to its corresponding point in the other image, is below a certain threshold.

It can be seen that the more inliers a certain model has, the more likely it is
also to be sampled, since any subset of m of its inliers will give rise to a very similar
model hypothesis. More generally, an important role in this estimation is played by the
true inlier ratio € = I*/N of the dataset, i.e. by the ratio of the inliers of the correct
solution to all available correspondences. If this ratio is known, then it becomes possible
to estimate the number of samples that must be drawn until an uncontaminated sample
is found with probability (1 — 7). We can thus derive a run-time bound as follows. Let &
be the fraction of inliers as defined above and let m be the size of the sampling set. Then
the probability that a single sample of m points is correct is €™, and the probability
that no correct sample is found in k& RANSAC iterations is given by

n=(1-¢egmk. (5.11)

We therefore need to choose k high enough, such that 7 is kept below the desired failure
rate 7. As the true inlier ratio is typically unknown, a common strategy is to use the




52 CHAPTER 5. GEOMETRIC VERIFICATION OF MATCHED FEATURES

inlier ratio of the best solution found thus far in order to formulate the termination
criterion. The resulting procedure is summarized in Algorithm 1.

RANSAC has proven its worth in a large number of practical applications, in
many cases yielding good solutions already in a moderate number of iterations. As a
result of the rather coarse quality criterion (the number of inliers in a certain tolerance
band), the initial solution returned by RANSAC will however only provide a rough
alignment of the model. A common strategy is therefore to refine this solution further,
e.g. through a standard least-squares minimization that operates only on the inlier
set. However, as such a step may change the status of some inlier or outlier points,
an iterative procedure with alternating fitting and inlier /outlier classification steps is
advisable.

Since RANSAC’s introduction by Fischler & Bolles in 1981, various improvements
and extensions have been proposed in the literature (see (Proc. IEEE Int’l Workshop
“25 Years of RANSAC” in conjunction with CVPR 2006) for some examples). Among
those are extensions to speed up the different RANSAC stages (Capel 2005, Chum &
Matas 2005, 2008, Matas & Chum 2004, 2005, Sattler et al. 2009), to deliver run-time
guarantees for real-time performance (Nistér 2003, Raguram et al. 2008), and to improve
the quality of the estimated solution (Chum et al. 2004, 2005, Frahm & Pollefeys 2006,
Torr & Zisserman 2000). We refer to the rich literature for details.

5.2.2 GENERALIZED HOUGH TRANSFORM

The Hough Transform, named after its inventor P.V.C. Hough, was originally intro-
duced in 1962 as an efficient method for finding straight lines in images (Hough 1962).
Its basic idea is to take the parametric form of a model (e.g. the equation for a line
in 2D) and swap the role of the variables and parameters in order to obtain an equiv-
alent representation in the parameter space such that data points lying on the same
parametric model are projected onto the same point in parameter space.

Ballard (1981) later on showed how this idea could be generalized to detect ar-
bitrary shapes, leading to the Generalized Hough Transform (GHT). The basic idea of
this extension is that we can let observed single feature correspondences wvote for the
parameters of the transformation that would project the object in the model image to
the correct view in the test image.

For this, we use the single-feature estimation approaches described in Sec-
tions 5.1.1 and 5.1.2 for scale invariant and affine invariant transformation models.
Similar to the above, we subdivide the parameter space into a discrete grid of accu-
mulator cells and enter the vote from each feature correspondence by incrementing the
corresponding accumulator cell value. Local maxima in the Hough voting space then
correspond to consistent feature configurations and thus to object detection hypotheses.
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Figure 5.4: Visualization of the Generalized Hough Transform (GHT) for object recognition.
Each local feature matched between model and test image (shown in yellow) defines a transfor-
mation of the entire object reference frame (shown in blue). The GHT lets each such feature
pair vote for the parameters of the corresponding transformation and accumulates those votes
in a binned voting space. In this example, a 3-dimensional voting space is shown for translation
x,y and rotation 6. In practice, scale could be added as a 4" dimension of the voting space.
FIGURE SOURCE: left two images from Svetlana Lazebnik’s slides.

Figure 5.4 visualizes the corresponding GHT procedure for an example of a rotation
invariant recognition problem.

As pointed out by Lowe (1999), it is important to avoid all quantization artifacts
when performing the GHT. This can be done, e.g., by interpolating the vote contri-
bution into all adjacent cells. Alternatively, (or in addition, depending on the level of
noise and the granularity of the parameter-space discretization), we can apply Gaussian
smoothing on the filled voting space. This becomes all the more important the higher
the dimensionality of the voting space gets, as the influence of noise will then spread
the votes over a larger number of cells.

5.2.3 DISCUSSION

Comparing RANSAC with the GHT, there is clearly a duality between both approaches.
Both try to find a consistent model configuration under a significant fraction of out-
lier correspondences. The GHT achieves this by starting from a single feature corre-
spondence and casting votes for all model parameters with which this correspondence
is consistent. In contrast, RANSAC starts from a minimal subset of correspondences
to estimate a model and then counts the number of correspondences that are consis-
tent with this model. Thus, the GHT represents the uncertainty of the estimation in
the model parameter space (through the voting space bin size and optional Gaussian
smoothing), while RANSAC represents the uncertainty in the image space by setting a
bound on the projection error.
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The complexity of the GHT is linear in the number of feature correspondences
(assuming a single vote is cast for each feature) and in the number of voting space cells.
This means that the GHT can be efficiently executed if the size of the voting space
is small, but that it can quickly become prohibitive for higher-dimensional data. In
practice, a 4D voting space is often considered the upper limit for efficient execution.
As a positive point, however, the GHT can handle a larger percentage of outliers with
higher dimensionality (> 95% in some cases), since inconsistent votes are then spread
out over a higher-dimensional volume and are thus less likely to create spurious peaks.
In addition, the algorithm’s runtime is independent of the inlier ratio.

In contrast, RANSAC requires a search through all data points in each iteration
in order to find the inliers to the current model hypothesis. Thus, it becomes more
expensive for larger datasets and for lower inlier ratios. On the other hand, advantages
of RANSAC are that it is a general method suited to a large range of estimation
problems, that it is easy to implement, and that it scales better to higher-dimensional
models than the GHT. In addition, numerous extensions have been proposed to alleviate
RANSAC’s shortcomings for a range of problems (Proc. IEEE Int’l Workshop “25 Years
of RANSAC” in conjunction with CVPR 2006).

We have now seen the three key steps that state-of-the-art methods use to perform
specific object recognition: local feature description, matching, and geometric verifica-
tion. In the next chapter we will give examples of specific systems using this general
approach.
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CHAPTER 6

Example Systems: Specific-Object
Recognition

In the following, we will present some applications where the specific object recognition
techniques presented above are used in practice. The purpose of this overview is to give
the reader a feeling for the range of possibilities, but it should by no means be thought
of as an exclusive list.

6.1 IMAGE MATCHING

A central motivation for the development of affine invariant local features was their use
for wide-baseline stereo matching. Although this is not directly a recognition problem,
it bears many parallels. Thinking of one camera image as the model view, we are
interested in finding a consistent set of correspondences in the other view under an
epipolar geometry transformation model (not covered in Section 5.1). Figure 6.1 shows
an example for such an application in which feature correspondences are first established
using affine covariant regions and RANSAC is then used to find consistent matches
(Tuytelaars & Van Gool 2004).

Figure 6.2 shows another application where local-feature based matching is used
for creating panoramas. This approach is again based on SIFT features, which are used
to both find overlapping image pairs and estimate a homography between them in order
to stitch the images together (Brown & Lowe 2003, 2007).

6.2 OBJECT RECOGNITION

The introduction of local scale and rotation invariant features such as SIFT (Lowe
2004) has made it possible to develop robust and efficient approaches for specific object
recognition. A popular example is the approach proposed by Lowe (1999, 2004) based
on the Generalized Hough Transform described in Section 5.2.2. This approach has
been widely used in mobile robotic applications and now forms part of the standard
repertoire of vision libraries for robotics.

Figure 6.3 shows recognition results obtained with the GHT in (Lowe 1999). The
approach described in that paper first extracts scale and rotation invariant SIFT fea-
tures in each image and then uses matching feature pairs in order to cast votes in a
(coarsely-binned) 4-dimensional (z,y, 6, s) voting space. The resulting similarity trans-
formation is in general not sufficient to represent a 3D object’s pose in space. However,
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Figure 6.1: Example application: wide-baseline stereo matching FIGURE FROM Tinne Tuyte-
laars (Tuytelaars & Van Gool 2004)).

the Hough voting step provides an efficient way of clustering consistent features by their
contribution to the same voting bin. The resulting pose hypotheses are then refined by
fitting an affine transformation to the feature clusters in the dominant voting bins and
counting the number of inlier points as hypothesis score. As a result, the approach can
correctly recognize complex 3D objects and estimate their rough pose despite viewpoint
changes and considerable partial occlusion.

6.3 LARGE-SCALE IMAGE RETRIEVAL

The techniques from Chapter 4 make it possible to scale the recognition procedure to
very large data sets. A large-scale recognition application making use of this capability
was presented by (Philbin et al. 2007) (see Figure 6.4). Here, a number of different affine
covariant region detectors are pooled in order to create a feature representation for each
database image. The extracted features are stored in an efficient indexing structure (see
Chapter 4) in order to allow efficient retrieval from large image databases containing
5,000 to 1,000,000 images. Given a user-specified query region in one image, the system
first retrieves a shortlist of database images containing matching features and then
performs a geometric verification step using RANSAC with an affine transformation
model in order to verify and rank matching regions in other images.

6.4 MOBILE VISUAL SEARCH

A particular field where large-scale content-based image retrieval is actively used today
is visual search from mobile phones. Here, the idea is that a user takes a photo of an
interesting object from his/her mobile phone and sends it as a query to a recognition
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Figure 6.2: Example application: image stitching (FIGURE FROM Brown & Lowe (2003,
2007)).

server. The server recognizes the depicted object and sends back object-specific content
to be displayed on the mobile device.

One of the first approaches to demonstrate practical large-scale mobile visual
search was proposed by Nister & Stewenius (2006). Their approach (based on local
features and the Vocabulary Tree indexing scheme described in Section 4.1.1) could
recognize examples from a database of 50,000 CD covers in less than a second, while
running on a single laptop. In the meantime, a number of commercial services have
sprung up that offer mobile visual search capabilities covering databases of several mil-
lion images, among them Google goggles (www.google.com/mobile/goggles/), kooaba
Visual Search (http://www.kooaba.com/), and Amazon Remembers. Almost all such
services are based on the local-feature based recognition, matching, and geometric ver-
ification pipeline described in the previous chapters. As large databases have to be
searched, scalable matching and indexing techniques are key. Despite the large database
sizes, the employed techniques have however been optimized so far that response times
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Figure 6.3: Object recognition results with the approach by Lowe (1999, 2004) based on the
Generalized Hough Transform. FIGURE ADAPTED FROM LOWE (Lowe 1999)).

of 1-2s are feasible (including feature extraction, matching, and geometric verification,
but without considering communication delays for image transmission). As a result of
the local-feature based recognition pipeline, the approaches work particularly well for
textured, (locally) planar objects, such as book/CD/DVD covers, movie posters, wine
bottle labels, or building facades.

6.5 IMAGE AUTO-ANNOTATION

As a final application example, we present an approach for large-scale image auto-
tagging (Quack et al. 2006, Gammeter et al. 2009), i.e. for detection of “interesting”
objects in consumer photos and the automatic assignment of meaningful labels or tags
to those objects. This is visualized in Figure 6.5. The approach by Quack et al. (2006),
Gammeter et al. (2009) starts by automatically mining geotagged photos from internet
photo collections and roughly bins them into geospatial grid cells by their geotags. The
images in each cell are then matched in order to find clusters of images showing the same
buildings (using SURF features and RANSAC with a homography model), which are
then also automatically linked to Wikipedia pages through their tags. Given a novel test
image, the previously extracted image clusters are used as “beacons” against which the
test image is matched (again using SURF features and RANSAC with a homography
model). If a match can be established, the matching image region is automatically
annotated with the building name, location, and with a link to the associated web
content.
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Figure 6.4: Example application: large-scale image retrieval. The first column shows a user-
specified query region. The other columns contain automatically retrieved matches from a
database of about 5,000 images FIGURE FROM Philbin et al. (2007)).

6.5.1 CONCLUSIONS

In this chapter, we have seen how local features can be leveraged for specific object
recognition. The general procedure for this task, which was followed by all of the above
application examples, was to first match local features between images in order to
find candidate correspondences and to then verify their geometric configuration by
estimating a common transformation.
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Figure 6.5: Example application: image auto-annotation. The green bounding boxes show au-
tomatically created annotations of interesting buildings in novel test images. Each such bounding
box is automatically linked to the corresponding article in Wikipedia FIGURE FROM Gam-
meter et al. (2009)).
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CHAPTER 7

Overview: Recognition of Generic Object
Categories

The remainder of this lecture is dedicated to the problem of generic category-level object

recognition and detection. Whereas the task of specific object recognition was largely

a matching problem, for categories we need to construct models able to cope with the

variety of appearance and shape that instances of the same category may exhibit.
The basic steps underlying most current approaches today are as follows:

e First, we must choose a representation and accompanying model (which may be
hand-crafted, learned, or some combination thereof).

e Then, given a novel image, we need to search for evidence supporting our object
models, and assign scores or confidences to all such candidates.

e Finally, we need to take care to suppress any redundant or conflicting detections.

While the representation and learning choices are vast, we see a natural division
between “window-based” models that describe appearance holistically within a region
of interest, and “part-based” models that define the appearance of local parts together
with some geometric structure connecting them. Thus, in the following, we first describe
some commonly used representations, for the window- and part-based genres in turn
(Chapter 8).

Given these possible representations, we then discuss how the detection stage
proceeds for either model type—from sliding window-based approaches for the holistic
representations, to voting and fitting methods for part-based models (Chapter 9). Next,
we overview how their associated parameters or discriminative models can be learned
from data (Chapter 10). Finally, we close this segment with detailed descriptions of
several state-of-the-art and widely used systems that instantiate all of the above com-
ponents, including the Viola-Jones face detector, HOG person detector, bag-of-words
discriminative classifiers, the Implicit Shape Model detector, and the Deformable Part-
based Model detector (Chapter 11).




62

CHAPTER 8

Representations for Object Categories

Many image descriptions can serve generic category models. Our goal in this chapter is
to organize and briefly describe a selection of representative examples. At the highest
level, we divide the representations into (1) those that are “window-based”, meaning
that they summarize appearance (texture/shape/geometry...) in a single descriptor for
a region of interest (Section 8.1), and (2) those that are “part-based”, meaning that
they combine separate descriptors for the appearance of a set of local parts together
with a geometric layout model (Section 8.2). In terms of appearance, there is significant
overlap in the low-level feature used for either type of model; however, we will see in

Chapter 9 that their associated procedures for detecting novel instances within a scene
differ.

8.1 WINDOW-BASED OBJECT REPRESENTATIONS

How should an image be described to capture the relevant visual cues to recognize
an object of a certain category? We briefly overview some candidates in this section,
focusing on those types of descriptors that tend to be used to summarize an image
window. Note throughout we use “window” interchangeably to refer to the entire image
or some candidate sub-window within the image. This overview is intended to provide
some key pointers of the types of features frequently used in today’s recognition systems;
however, the list is not exhaustive.

8.1.1 PIXEL INTENSITIES AND COLORS

In order to construct holistic features, we can in principle use the same methods as
already introduced in Section 2.1 when we discussed global representations for specific
objects. The simplest such representation is a direct concatenation of the pixel inten-
sities into a single feature vector, which can then be optionally processed by subspace
methods such as PCA or FLDA. Similarly, we can describe the distribution of colors
present with a color histogram; for certain categories, color is a defining cue—the best
example, perhaps, being skin (Jones & Rehg 1999). On the other hand, in general the
importance of color for class discrimination is somewhat limited, both because within
many categories there is wide color variation, and since forming illumination-invariant
representations of color remains a challenging research issue.
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Figure 8.1: Examples of window-based holistic appearance/texture descriptors. From left to

right and top to bottom: pixel-based descriptions such as Eigenfaces (Turk & Pentland 1992)
map ordered intensities to a subspace; the GIST descriptor applies multiple steerable filters at
multiple scales, and averages responses within a grid of cells in the image (Torralba 2003); a bag-
of-words descriptor (e.g., (Csurka et al. 2004)) counts the frequency with which each visual word
occurs in the image or window; the HOG descriptor histograms the oriented gradients within a
grid of overlapping cells (Dalal & Triggs 2005); the pyramid of HOG extends this to represent
shape within cells of multiple scales (Bosch et al. 2007b); a spatial bag-of-words histogram
computes a bag-of-words histogram within a pyramid of cells over the window (Lazebnik et al.
2006). FIGS PARTLY FROM PAPERS/SLIDES.

8.1.2 WINDOW DESCRIPTORS: GLOBAL GRADIENTS AND TEXTURE

Aside from raw pixels, features are generally built from the outputs of image filters
and other low-level image processing stages. Contrast-based features are of particular
interest, due to their insensitivity to lighting changes or color variation. The gradients
in an image’s intensities indicate edges and texture patterns, the total spatial layout
of which comprise an important (detectable) aspect of an object’s appearance. There
is also evidence that early processing in the human and many animal visual systems
relies on gradient or contrast-based representations (Hubel & Wiesel 1959, 1977); some
work in computer vision takes direct inspiration from biological systems when designing
features (Serre et al. 2005).

To reduce sensitivity to small shifts and rotations, effective features often include
some form of binning of local image measurements. Spatial histograms offer a way
to make the features locally orderless, which gives some tolerance to orientation and
position differences, while still preserving total layout.
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Figure 8.2: Examples of local texture descriptors: SIFT (Lowe 2004), SURF (Bay et al. 2006),

Haar-like box filters (Viola & Jones 2004), and Textons (Malik et al. 2001, Leung & Malik 1999).
FIGS PARTLY FROM PAPERS/SLIDES.

Good examples of this concept are the Histogram of Oriented Gradients
(HOG) (Dalal & Triggs 2005), pyramid of HOG (Bosch et al. 2007b), and GIST (Tor-
ralba 2003) descriptors (see Figure 8.1). The HOG descriptor designed by Dalal & Triggs
(2005) bins the oriented gradients within overlapping cells. The authors demonstrate
its success for pedestrian detection; in general, it is best-suited for textured objects
captured from a fairly consistent viewpoint. The pyramid of HOG (pHOG) descrip-
tor (Bosch et al. 2007b) collects the oriented gradient responses in a pyramid of bins
pulled from the image or region of interest, summarizing the content within regions of
increasingly finer spatial extent. The GIST descriptor of Torralba (2003) is a global
representation that divides the image into a 4x4 grid, and within each cell records ori-
entation histograms computed from Gabor or steerable filter outputs. GIST has been
shown to be especially valuable as a holistic representation for scene categories.

8.1.3 PATCH DESCRIPTORS: LOCAL GRADIENTS AND TEXTURE

Modifying the general form of the global texture descriptions above to be extracted
within only local subwindows or patches, we have a class of local texture/gradient
features. See Figure 8.2 for examples.

The SIFT descriptor developed by Lowe (2004) consists of a histogram of oriented
image gradients captured within grid cells within a local region. The SIFT descriptor
has been shown to be robust under shape distortion and illumination changes, and is
therefore widely used. The SURF descriptor (Bay et al. 2006) is an efficient “speeded
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up” alternative to SIFT that uses simple 2D box filters to approximate derivatives. For
details on both descriptors, see Chapter 3.

In the context of specific-object recognition, we considered such patch descrip-
tors in conjunction with a (scale- or affine-) invariant interest operator; that is, we
extracted SIFT descriptors at the positions and scales designated by one of the local
feature detectors. While for specific objects this is quite effective due to the interest
operators’ repeatability and descriptors’ distinctiveness, for generic category represen-
tations, such a sparse set of local features is often insufficient. Instead, for category-level
tasks, research suggests that a regular, dense sampling of descriptors can provide a bet-
ter representation (Nowak et al. 2006, Lazebnik et al. 2006). Essentially, dense features
ensure that the object has more regular coverage; there is nothing that makes the “inter-
est” points according to an invariant detector correspond to the semantically interesting
parts of an object. When using a dense sampling, it is common to extract patches at
a regular grid in the image, and at multiple scales. A compromise on complexity and
descriptiveness is to sample randomly from all possible dense multi-scale features in the
image. See Figure 8.3.

Viola and Jones define rectangular features (Viola & Jones 2004), which are Haar-
like box filters parameterized by their position, scale, and set of internal boxes; for
example, the bottom right example on the face in Figure 8.2 signifies that the filter
output would be the sum of the intensities in the center white rectangle, minus the
sum of the intensities in the left and right black rectangles. While SIFT and SURF
are typically extracted at salient interest points detected independently per image,
the positions and scales at which rectangular features are extracted is typically learned
discriminatively using a set of labeled images (as in the Viola-Jones frontal face detector;
see below in Chapter 11).

Whereas the above local descriptors all pool intensity contrasts within subregions
(cells) of the descriptor, texton descriptors (e.g., (Leung & Malik 1999, Malik et al.
2001)) instead record a series of filter bank responses at each pixel, and then summarize
the histogram of those responses within local regions. The local summary is computed
by mapping each pixel’s multidimensional response to a prototypical texton, which are
simply representative filter bank responses computed by quantizing a sample of them
(i.e., the “visual words” in texture space). The filter bank itself usually consists of
convolution kernels sensitive to a variety of scales and orientations. The textons thus
give a dense description of the occurrence of basic textures. While original texton-based
representations were applied for material classification (Leung & Malik 1999, Cula &
Dana 2001, Varma & Zisserman 2002), they are now also often used in object recognition
to summarize the texture in a segmented region (e.g., (Shotton et al. 2006)).
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(a) (b)

(c)

Figure 8.3: Depending on the level of recognition and data, sparse features detected with a
scale invariant interest operator or dense multi-scale features extracted everywhere in the image
may be more effective. While sparse distinctive points are likely sufficient to match specific
instances (like the two images of the UT Tower in (a)), to adequately represent a generic
category (like the images of bicycles in (b) and (c)), more coverage may be needed. Note how
the interest operator yields a nice set of repeatable detections in (a), whereas the variability
between the bicycle images leads to a less consistent set of detections in (b). A dense multi-scale
extraction as in (c) will cost more time and memory, but guarantees more “hits” on the object
regions the images have in common. The Harris-Hessian-Laplace detector (Harris & Stephens
1988) was used to generate the interest points shown in these images.
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8.1.4 A HYBRID REPRESENTATION: BAGS OF VISUAL WORDS

A third window-based representation widely used for generic object category models is
the bag of visual words. This approach uses a visual vocabulary, as introduced earlier in
Section 4.2, to compactly summarize the local patch descriptors within a region using
a simple 1D histogram (see Figure 4.4 (d)).

It is in some sense a hybrid of the two above mentioned styles (window + local
patches), since it records the occurrence of the local visual word descriptors within a
window of interest. Whereas the descriptors in Section 8.1.2 (e.g., HOG) record the
2D map of texture with locally orderless component histograms, this representation is
completely orderless. This means greater flexibility is allowed (for better or worse) with
respect to viewpoint and pose changes. At the same time, the invariance properties of
the individual local descriptors make them a powerful way to tolerate viewpoint or pose
variation while giving informative local appearance cues. The regularity or rigidity of
an object category’s appearance pattern in 2D determines which style is better suited.
For example, the class of frontal faces is quite regular and similarly structured across
instances, and thus is more suitable for the 2D layout-preserving descriptors; in contrast,
giraffes are articulated, more likely to have pose changes per view, and their coats show
inexact variations on a texture pattern—all of which make it suited to a more flexible
summary of the texture and key features.

What is particularly convenient about the bag of words (BoW) representation is
that it translates a (usually very large) set of high-dimensional local descriptors into
a single sparse vector of fixed dimensionality across all images. This in turn allows
one to use many machine learning algorithms that by default assume the input space is
vectorial—whether for supervised classification, feature selection, or unsupervised image
clustering. Csurka et al. (2004) first showed this connection for recognition by using the
bag-of-words descriptors for discriminative categorization. Since then, many supervised
methods exploit the bag-of-words histogram as a simple but effective representation. In
fact, many of the most accurate results in recent object recognition challenges employ
this representation in some form (Everingham et al. 2008, Fei-Fei et al. 2004).

Assuming none of the patches in an image overlap, one would get the same de-
scription from a BoW no matter where in the image the patches occurred. In practice,
features are often extracted such that there is overlap, which at least provides some
implicit geometric dependencies among the descriptors. In addition, by incorporating
a post-processing spatial verification step, or by expanding the purely local words into
neighborhoods and configurations of words (e.g., as in (Savarese et al. 2006, Agarwal
& Triggs 2006, Quack et al. 2007, Lee & Grauman 2009a)), one can achieve an in-
termediate representation of the relative geometry. Recent work also considers how to
hierarchically aggregate the lowest level tokens from the visual vocabulary into higher




68 CHAPTER 8. REPRESENTATIONS FOR OBJECT CATEGORIES

level parts, objects, and eventually scenes (Sudderth et al. 2005, Agarwal & Triggs 2006,
Parikh et al. 2009).

To encode global position information into the descriptor, the spatial pyramid bag
of words computes and concatenates a bag of words histogram in each bin of a pyramid
partitioning the image space (Lazebnik et al. 2006) (see Figure 8.1, bottom right).
Such a descriptor is sensitive to translations, making it most appropriate for scene-level
descriptors, or where the field of view is known to contain the primary object of interest
in some regular background.

When the BoW is extracted from the whole image (with spatial binning or oth-
erwise), features arising from the true foreground and those from the background are
mixed together, which can be problematic, as the background features “pollute” the
object’s real appearance. To mitigate this aspect, one can form a single bag from each
of an image’s segmented regions, or in the case of sliding window classification (to be
discussed in Section 9.1), within a candidate bounding box sub-window of the image.

In spite of clear benefits that visual words afford as tools for recognition, the
optimal formation of a visual vocabulary remains unclear; building one requires many
choices on the part of the algorithm designer. The analogies drawn between textual and
visual content only go so far: real words are discrete and human-defined constructs,
but the visual world is continuous and yields complex natural images. Real sentences
have a one-dimensional structure, while images are 2D projections of the 3D world.
Thus, more research is needed to better understand the choices made when constructing
vocabularies for local features.

8.1.5 CONTOUR AND SHAPE FEATURES

Whereas the appearance-based features above tend to capture texture and photometric
properties, shape-based features emphasize objects’ outer boundaries and interior con-
tours. A full discussion on the shape matching problem and shape representations is
however outside of the scope of this tutorial and we refer to the extensive literature for
details (Gavrila & Philomin 1999, Belongie et al. 2002, Ferrari et al. 2006, Opelt et al.
2006a).

8.1.6 FEATURE SELECTION

Among the many possible descriptors to summarize appearance within an image sub-
window, not all necessarily use the entire content of the window. For example, note
that in contrast to the HOG descriptor, which uses all pixels within a sub-window,
descriptors like the rectangular features (Figure 8.1 center, bottom) are extracted at a
specific subset of local regions within the window. Which set to select can be determined
by using an interest operator or saliency measure, or else in a discriminative manner.



8.2. PART-BASED OBJECT REPRESENTATIONS 69

Figure 8.4: While the global object appearance may undergo significant variation inside a
category, the appearance and spatial relationship of local parts can often still give important
cues. This provides a strong motivation for using part-based models FIGURE FROM ROB
FERGUS’s SLIDES.

Discriminative feature selection uses labeled data to identify those feature di-
mensions or measurements that are most helpful to distinguish between images from
different categories. Boosting-based methods can simultaneously select useful features
and build a classifier, and they have been employed frequently by recognition methods.
Viola and Jones’ face detector uses AdaBoost to select from a large library of candi-
date rectangular features—reducing the pool from hundreds of thousands of possible
localized filters to the select few (say, hundreds) that are most discriminative between
faces and non-faces (Viola & Jones 2004). Researchers have also developed methods
to jointly select useful features for multiple categories, learning those shared features
among classes that yield good discriminative classifiers (Torralba et al. 2004, Opelt et al.
2006a). Dorko & Schmid (2003) show that classic feature selection measures such as
mutual information can be useful to identify discriminative class-specific local features.

8.2 PART-BASED OBJECT REPRESENTATIONS

The previous section introduced object categorization representations based on textured
window descriptors or unordered sets of local features (as in the case of bag of words
representations). In this section, we examine ways to incorporate more detailed spatial
relations into the recognition procedure.
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Figure 8.5: Overview over different part-based models investigated in the literature. In this
chapter, we focus on two models from this list: the Constellation Model and the Star Model
FIGURE ADAPTED FROM Carneiro & Lowe (2006)).

For this, we draw parallels to the specific object recognition techniques presented
in Chapters 3 to 6. Back then, we were concerned with establishing exact correspon-
dences between the test image and the model view in order to verify if the matched
features occurred in a consistent geometric configuration. As the exact appearance of
the model object was known, the extracted features could be very specific, and accurate
transformation models could be estimated.

When moving from specific object recognition to object categorization, however,
the task becomes more difficult. Not only may the object appearance change due to
intra-category variability, but the spatial layout of category objects may also undergo a
certain variation. Thus, we can no longer assume the existence of exact correspondences.
However, as shown in Figure 8.4, we can still often find local object fragments or parts
with similar appearances that occur in a similar spatial configuration. The basic idea
pursued here is therefore to learn object models based on such parts and their spatial
relations. The remainder of this section overviews the part-based model structures; later
in Chapter 10 we discuss how their parameters are learned from data.

8.2.1 OVERVIEW OF PART-BASED MODELS

Many part-based models have been proposed in the literature. The idea to represent
objects as an assembly of parts and flexible spatial relations reaches back to Fischler
& Elschlager (1973). They introduced a model consisting of a number of rigid parts
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held together by “springs”, and formulated a matching objective penalizing both the
disagreement between matched parts as well as the springs’ tension, thereby constrain-
ing the relative movement between parts. While this early work started from a set of
hand-defined part templates, most recent approaches try to also learn the part appear-
ance from training data. This implies that the learning algorithm itself should be able
to select which local object regions to represent and it should be able to group similar
local appearances into a common part representation. An optimal solution to the selec-
tion problem would imply a search over a huge search space. The development of local
invariant features however provides an efficient alternative which has proven to work
well in practice. Consequently, most part-based models discussed in the following are
based on local features.

Once the parts have been defined, the next question is how to represent their
spatial relationship. This choice reflects the mutual independence assumptions we want
to make about relative part locations, and it directly affects the number of parameters
needed to fully specify the resulting model, as well as the complexity of performing
inference using this model.

Various spatial models have been proposed over the years. Figure 8.5 gives an
overview over the most popular designs. The simplest model is a bag of visual words,
as described in Section 8.1.4 and shown in Fig. 8.5(a). This model does not encode any
geometric relations and is listed just for completeness. At the other extreme is a fully
connected model, which expresses pairwise relations between any pair of parts. This
type of model has become known as a Constellation Model and has been used in Fergus
et al. (2003), Fei-Fei et al. (2003). A downside of the full connectivity is that such a
model requires an exponentially growing number of parameters as the number of parts
increases, which severely restricts its applicability for complex visual categories.

A compromise is to combine the parts in a Star Model (Fig. 8.5(c)), where each
part is only connected to a central reference part and is independent of all other part
locations given an estimate for this reference part. Such a representation has been used
in the Implicit Shape Model (Leibe et al. 2004, Leibe, Leonardis & Schiele 2008), in
the Pictorial Structure Model (Felzenszwalb & Huttenlocher 2005, Felzenszwalb et al.
2008, Felzenszwalb, Girshick, McAllester & Ramanan 2010), as well as in several other
approaches (Crandall et al. 2005, Fergus, Perona & Zisserman 2005, Opelt et al. 2006a).
The advantage of this model is its computational efficiency: for N features, exact infer-
ence can be performed in O(N?) (compared to O(N*) for a k-part Constellation model),
and more efficient approximations can be devised based on the ideas of the Generalized
Hough Transform (Leibe & Schiele 2003, Leibe et al. 2004, Leibe, Leonardis & Schiele
2008) or the Generalized Distance Transform (Felzenszwalb & Huttenlocher 2005). The
idea of the Star Model can be readily generalized to a Tree Model (Fig. 8.5(d)), where
each part’s location is only dependent on the location of its parent. This type of model is
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Figure 8.6: Visualization of the different components of the Constellation Model (see text for
details) FIGURE FROM SLIDES FOR Fergus et al. (2003)).

also used in the Pictorial Structures framework by Felzenszwalb & Huttenlocher (2005)
and has led to efficient algorithms for human pose estimation.

Finally, the above ideas can be generalized in various other directions. The k-
fan Model (Crandall et al. 2005) (Fig. 8.5(e)) spans a continuum between the fully-
connected Constellation Model and the singly-connected Star Model. It consists of a
fully-connected set of k reference parts and a larger set of secondary parts that are
only connected to the reference parts. Consequently, its computational complexity is
in O(N*1). A similar idea is employed in the Hierarchical Model (Fig. 8.5(f)) by
Bouchard & Triggs (2005), which contains a (star-shaped) layer of object parts, each of
which is densely connected to a set of bottom-level local feature classes. Finally, there
is the Sparse Flexible Model (Fig. 8.5(g)) proposed by Carneiro & Lowe (2006), where
the geometry of each local part depends on the geometry of its & nearest neighbors,
allowing for flexible configurations and deformable objects.

In the following, we will focus on two models from this list which have been
widely used in the literature: the fully connected model and the star-shaped model. We
will introduce the basic algorithms behind those approaches and discuss their relative
strengths and weaknesses.
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8.2.2 FULLY-CONNECTED MODELS: THE CONSTELLATION MODEL

As an example of a fully-connected part representation, we describe the Constellation
Model by Weber et al. (2000b,a) and Fergus et al. (2003). This model represents objects
by estimating a joint appearance and shape distribution of their parts. Thus, object
parts can be characterized either by a distinct appearance or by a distinct location on
the object. As a result, the model is very flexible and can even be applied to objects
that are only characterized by their texture.

The Constellation model can best be introduced by first considering the recog-
nition task. Given a learned object class model with P parts and parameters #, the
task is to decide whether a new test image contains an instance of the learned object
class or not. For this, N local features are extracted with locations X, scales S, and
appearances A. The Constellation model now searches for an assignment h of features
to parts in order to make a Bayesian decision R (Fergus et al. 2003):

p(ObjectX,S,A) _ p(X,S, Al9)p(Object)

= ~ 1
& p(No object| X, S, A) p(X, S, A|6,)p(No object) ’ (8:1)
where the likelihood factorizes as follows
p(X,S,Al0) = > p(X,S,A h|)
heH
= > p(AX,S,h.0)p(X|S,h,0) p(S|h.6) p(h]f) . (8.2)

Appearance Shape Rel. Scale Other

That is, we represent the likelihood as a product of separate terms for appearance,
shape, relative scale, and other remaining influences. Figure 8.6 shows a visualization
of those different components. In each case, a separate model is learned for the object
class and for the background.

Briefly summarized, the first term represents each part’s appearance indepen-
dently by a Gaussian density in a 15-dimensional appearance space obtained by PCA
dimensionality reduction from 11 x 11 image patches. This is compared against a single
Gaussian density representing the background appearance distribution. The shape term
models the joint Gaussian density of the part locations within a hypothesis in a scale-
invariant space. The corresponding background clutter model assumes features to be
spread uniformly over the image. The scale model is again given by a Gaussian density
for each part relative to a common reference frame, also compared against a uniform
background distribution. Finally, the last term takes into account both the number of
features detected in the image (modeled using a Poisson distribution) and a probability
table for all possible occlusion patterns if only a subset of the object parts could be
observed.

The classification score is computed by marginalizing over all |H| C O(NF) possi-
ble assignments of features to parts. This marginalization makes it possible to represent
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Figure 8.7: Results of the Constellation Model on two object categories: motorbikes and spot-
ted cats. The top row shows the learned representations for spatial relations and appearance; the
bottom row contains recognition results on images from the test set, visualizing the best-scoring
part assignment Figure from Fergus et al. (2003)).

an entire category by a relatively small number of parts. It effectively removes the need
to make hard assignments at an early stage — if two features provide an equally good
support for a certain part, both will contribute substantially to the total classification
result. At the same time, the exponential complexity of the marginalization constitutes
a major restriction, since it limits the approach to a relatively small number of parts.
Figure 8.7 shows the learned representations and recognition results on two dif-
ferent object categories. The first category, motorbikes, has a clearly defined structure.
Consequently, the learned model contains well-defined appearances and compact spa-
tial locations for all object parts (as visible from the small covariance ellipses in the
upper left plot of the figure). It can also be seen that the parts are consistently found
in corresponding locations on the test images, showing that the learned representation
really makes sense. In contrast, the second category, “spotted cats” contains significant
variability from different body poses and viewing angles. As a result, the Constellation
Model focuses on the repeatable texture as most distinctive feature and keeps only
very loose spatial relations. This ability to adapt to the requirements of different cat-
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egories, automatically weighting the contribution of appearance versus spatial features
as needed for the task at hand, is an important property of the Constellation Model.

8.2.3 STAR GRAPH MODELS

The fully-connected shape model described in the previous section is a powerful rep-
resentation, but suffers from a high computational complexity. In this section, we now
examine a recognition approach that builds upon a much simpler spatial representation,
namely a Star Model in which each part’s location only depends on a central reference
part. Given this reference position, each part is treated independently of the others.
Thus, the object shape is only defined implicitly by which parts agree on the same
reference point.

The key idea behind recognition in Star Models is to make use of the conditional
independence assumption encoded in the model structure in order to efficiently generate
hypotheses for the object location. Since each feature is treated independently from all
others given the position of the object center, we can learn separate relative location
distributions for each of them. If the same feature is then observed on a novel test image,
the learned location distribution can be inverted, providing a probability distribution
for the object center location given the observed feature location.

In Section 9.2, we will examine two popular approaches employing Star Models
for object category recognition, the Implicit Shape Model (ISM) by Leibe et al. (2004),
Leibe, Leonardis & Schiele (2008) and the Pictorial Structures Model by Felzenszwalb &
Huttenlocher (2005). Both employ slightly different strategies for combining the feature
contributions and both have been successfully used in practice.

The ISM is motivated by evidence combination in the Generalized Hough Trans-
form. It proposes a probabilistic Hough Voting framework that incorporates the un-
certainty inherent in the categorization task. In this framework, the votes from differ-
ent features are added, and object hypotheses are found as peaks in a (typically 3D
x,y, scale) voting space. In contrast, the Pictorial Structures Model is motivated by in-
ference in graphical models. It proposes a Generalized Distance Transform that allows
fast and exact inference in 2D by integrating the contributions of different parts in a
max operation. The Pictorial Structures approach can be used both with a Star and
with a Tree Model and has become popular both for object detection and for articulated
body pose analysis (e.g. in (Ramanan et al. 2007, Ferrari et al. 2008, Andriluka et al.
2008)).

Despite their structural similarities, the two models adopt different philosophical
interpretations of what object properties should be represented. The Pictorial Structures
model aims at representing a relatively small number of (less than 10) semantically
meaningful parts, with the tacit assumption that each object of the target category
should contain those parts. The parts may undergo appearance variations and may occur
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in varying spatial configurations, but a majority of them should always be present (and
if any part cannot be found, it should be explicitly treated as “occluded”). In contrast,
the ISM does not try to model semantically meaningful parts, but instead represents
objects as a collection of a large number (potentially 1000s) of prototypical features that
should ideally provide a dense cover of the object area. Each such prototypical feature
has a clearly defined, compact appearance and a spatial probability distribution for the
locations in which it can occur relative to the object center. In each test image, only a
small fraction of the learned features will typically occur—e.gq., different features will
be activated for a dark and a brightly colored car—but their consistent configuration
can still provide strong evidence for an object’s presence.

8.3 MIXED REPRESENTATIONS

Part-based models have the advantage that they can deal with object shapes that are
not well-represented by a bounding box with fixed aspect ratio. They have therefore
often be applied for recognizing deformable object categories. In contrast, it has been
observed that, given sufficient training data, the discriminative sliding-window models
from Section 8.1 (e.g., (Viola & Jones 2004, Dalal & Triggs 2005)) often perform better
for recognizing mostly rectangular object categories such as faces or front/back views
of pedestrians.

Therefore, apart from the clear separation into global and part-based representa-
tions, several approaches have been proposed that employ mixtures of the two concepts.
The most prominent of those is the Deformable Part-based Model by Felzenszwalb et al.
(2008). This model combines a global object template (called a root filter in (Felzen-
szwalb et al. 2008)) matched at a coarse image scale with a star-shaped local part model
matched at a finer scale.

The inverse path is taken by Chum & Zisserman (2007), which start from a Star
Model part representation in order to generate initial object hypotheses, which are
then verified by comparing the image content to the set of stored exemplar models.
Both approaches have achieved good performance in recent PASCAL VOC evaluations
(PAS 2007, Everingham et al. 2008).

8.4 CONCLUDING REMARKS

In this chapter, we have discussed several popular models for object categorization.
The Constellation model was historically one of the first successful part-based
models for object categorization. It therefore had a big impact and helped shape the
field for the next years. In addition, it initiated a research competition for the best
spatial representation and introduced one of the first realistic benchmark datasets for
this task. Many of the above-mentioned restrictions were addressed in follow-up work,
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e.g. in the later papers by (Fei-Fei et al. 2003, Fergus, Perona & Zisserman 2005). As
research progressed, it became clear that the full connectivity offered by the original
Constellation Model was both not required and could not be taken advantage of given
the usual training set sizes that were investigated. Instead, star-shaped and tree-shaped
spatial models were deemed more promising, as they require far fewer parameters and
are more efficient to evaluate. Consequently, Fergus et al. themselves proposed an up-
dated version of their model incorporating such a star topology (Fergus, Perona &
Zisserman 2005).

Historically, many common approaches for object detectors have been based on
global object models in a sliding-window framework (Rowley et al. 1998, Papageorgiou
& Poggio 2000, Viola & Jones 2004, Dalal & Triggs 2005). This simple design allowed
them to benefit directly from advances in classifier development (SVMs, AdaBoost,
etc.) and powerful discriminative training procedures.

However, in recent years this situation seems to have changed again, as purely
global sliding-window detectors are reaching the performance limits of their representa-
tion. At the recent conferences and in the PASCAL VOC’09 evaluation, improved detec-
tion performance was reported by several approaches relying again on part-based rep-
resentations that integrate discriminatively trained part classifiers (Felzenszwalb et al.
2008, Bourdev & Malik 2009, Gall & Lempitsky 2009).
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CHAPTER 9

Generic Object Detection: Finding and
Scoring Candidates

With the basic representations overviewed in the previous chapter, we can now outline
the detection process. The detection strategies for window-based and part-based models
differ, and so we again discuss them each in turn. Note that the following chapter
describes how the models are learned from image examples.

9.1 DETECTION VIA CLASSIFICATION

In this section we describe a basic approach that treats category detection as an image
classification problem. Assuming we have already decided on a feature representation
and trained a classifier that can distinguish the class of interest (say, cars) from any-
thing else using those features, we can then use the decision value of this classifier to
determine object presence/absence in a new image. When the object may be embedded
amidst “clutter” or background objects, one can insert a sliding window search into
this pipeline, testing all possible sub-windows of the image with the trained classifier.
In that case, the question at each window is, “does this contain object category X or
not?” See Figure 9.1 for a sketch.

The sliding window approach truly treats object detection as classification, and
asks at every position and scale within the image whether the object is present. To
run a multi-scale search, the input image is resampled into a pyramid. The window of
interest is then slid through each level, and the classifier outputs are stored. A detector
will usually have positive responses at multiple windows nearby the true detection (see
Figure 9.2); performing non-maximum suppression as a post-processing step can prune
the detections.

How are the detection outputs evaluated? Object detectors can receive partial
credit even if the proposed detection bounding box does not agree pixel-for-pixel with
the ground truth. Typically the score used to judge the amount of agreement is the
area of intersection of the detection window with the ground truth, normalized by the
area of their union. This gives the highest possible score (1.0) for a complete overlap, a
score of 0 for a false detection, and an intermediate score when there is some overlap.
To make a hard count on correct detections, a threshold is chosen on this overlap score;
if the score exceeds the threshold, it is a good detection. Depending on the application,
one may prefer to have more false positives or more false negatives. To show the full
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Figure 9.1: Main components of a sliding window detector. To learn from the images, some
feature representation must be selected. Labeled examples (positive exemplars, or both negative
and positive exemplars) are used to train a classifier that computes how likely it is that a given
window contains the object category of interest. Given a novel image, the features from each of
its sub-windows at multiple scales are extracted, and then tested by the classifier.

range of tradeoffs, Receiver Operating Characteristic (ROC) or precision-recall curves
are often used, where points on the curve are computed as a function of the threshold
on the detector’s confidence.

9.1.1 SPEEDING UP WINDOW-BASED DETECTION

Due to the significant expense of classifying each possible window, techniques have been
developed to either prioritize the order in which windows are scanned, or else to quickly
eliminate those windows that appear unlikely. Coarse-to-fine detection methods have
been developed in which one applies a sequence of tests (or classifiers) to the input
window, with each subsequent test designed to be more discriminating, and possibly
more expensive, than the last (Fleuret & Geman 2001, Rowley et al. 1998, Viola &
Jones 2004, Amit et al. 2004). This approach aims to rule out clear negatives early on,
and save more involved computations for those candidate windows that are most likely
to belong to the positive class.

For example, Fleuret & Geman (2001) design a chain of tests in this framework;
Viola & Jones (2004) propose a cascade structure in which each subsequent detector
computes more features, but is also tuned to produce lower false positive rates. Lampert
et al. (2008) devise a branch-and-bound technique for sliding window search that is
amenable to certain types of image kernels. By designing an easily computable bound
on the classifier output, they show that a priority queue can be used to dramatically
reduce the search time in a novel image.
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Figure 9.2: Non-maximum suppression is a useful post-processing step to prune out nearby
detections.

Another strategy is to focus the search for a given object based on localization
priors determined by the scene context. Torralba, Murphy, and colleagues show how to
prime an object detector according to the global GIST descriptor of the scene (Torralba
2003, Murphy et al. 2006). The intuition is that the presence or absence of an object in
an image is biased according to what the full scene looks like (e.g., an office scene is more
likely to have a computer than a giraffe), and further, the location and scale of a present
object depends on the global structures (e.g., a view down a street scene is likely to
have small pedestrians in the back, big ones in the front, and an alignment between the
detections and the contours of the street). The use of global context is expected to be
especially effective when the local appearance in a window is ambiguous, for example,
due to low resolution.

9.1.2 LIMITATIONS OF WINDOW-BASED DETECTION

The sliding window approach to detection—and more generally, the treatment of ob-
ject recognition as an image classification problem—has some important advantages.
It is a simple protocol to implement, and offers a ready testbed for sophisticated ma-
chine learning algorithms to learn complex patterns. With good features or learning
algorithms, this approach to detection can be quite effective. Some of today’s most
successful methods for faces and pedestrians are in fact built in this framework (Viola
& Jones 2001, Dalal & Triggs 2005).

On the other hand, there are some clear limitations. First, the high computational
cost of searching over all scales and positions is notable. The large number of windows
is not only expensive, but it also implies little room for error. With, say, a search
over 250,000 locations and 30 orientations and 4 scales, there are 30 million candidate
windows in a single image—this puts pressure on having an extremely low false positive
rate. Furthermore, treating the detection of each class as its own binary classification
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Figure 9.3: Sliding window detectors have noted limitations. Not all object categories are
captured well by a consistent and box-shaped appearance pattern (a), and considering windows
in isolation misses out on a great deal of information provided by the scene (b). FACE IMAGES
FROM Viola 2001, (b) IS FROM DEREK HOIEM’S SLIDES.

problem means that by default, classification time scales linearly with the number of
categories learned.

Additionally, the rectangular axis-aligned window used to do scanning is a mis-
match for many types of generic categories; not all objects are box-shaped, and so
detecting the full extent of the object may require introducing a significant amount of
clutter into the features. Similarly, partial occlusions will corrupt the description taken
from the window. Since global representations typically assume that all parts of the
window should influence the description equally, this is a real problem.

In addition, considering each window independent of the rest of the scene is a
handicap, as it entails a loss of context (see Figure 9.3). As such, current research in
context-based recognition and joint multi-class object detection aims to move away from
the kind of isolated decisions inherent to the sliding window strategy (e.g., (Torralba
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2003, Hoiem et al. 2006, He et al. 2004, Singhal et al. 2003, Shotton et al. 2006, Heitz

& Koller 2008, Galleguillos et al. 2008)). Such methods make decisions about object
presence based on the interaction between objects and scene elements, rather than the
appearance of the sub-window alone.

Classification-based methods also assume a sort of regularity in the inputs’ spatial
layout, so that distances in some feature space are meaningful. For non-rigid, deformable
objects or categories with less regular textures, this assumption will not hold. Similarly,
this style of detection expects training and testing to be done with the same (roughly)
fixed viewpoint relative to the object. For example, to detect profile faces rather than
frontal faces, one would need to train a separate classifier. Training classifiers to recog-
nize the appearance pattern of a category usually entails manually collection of a large
number of properly cropped exemplars, which is expensive.

9.2 DETECTION WITH PART-BASED MODELS

The relationship between window-based and part-based approaches can be interpreted
as a tradeoff between representational complexity and search effort. Window-based
approaches consider the entire object appearance holistically. They thus have to achieve
the desired level of invariance or generalization to changing object appearance and
shape by “blurring” the feature representation or by applying (expensive) non-linear
classifiers. In contrast, part-based approaches shift the representational effort to more
complex search procedures executed during the detector’s run-time.

This strategy makes it easier to deal with partial occlusions and also typically re-
quires fewer training examples. However, its practical success is crucially dependent on
efficient methods to search the potentially huge configuration space for consistent con-
stellations of matched parts. In the following, we present several part-based recognition
approaches that have been proposed for this step in the literature.

9.2.1 COMBINATION CLASSIFIERS

The simplest approach for combining the information from multiple object parts is by
training a combination classifier on their combined output. This approach was taken
by Mohan et al. (2001) and Heisele et al. (2001). Apart from its simplicity, advantages
of this approach are that, given enough training data, it can represent complex spatial
dependencies between part locations, and that it can account for different reliabilities
of the underlying part detectors.

However, combination classifiers also have a number of limitations. By construc-
tion, they are restricted to models which consist of a fixed number of parts, and best
results are achieved if the part responses themselves are obtained by discriminatively
trained detectors (Mohan et al. 2001, Heisele et al. 2001). In addition, a simple global
combination classifier cannot take advantage of possible factorization properties of the
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part representation. If some object parts can move independently of each other (such
as, to some degree, a human’s arms and legs), the combination classifier will therefore
require more training data in order to represent the entire variability.

9.2.2 VOTING AND THE GENERALIZED HOUGH TRANSFORM

Given a Star Model representation, the different part contributions can be combined in
a Generalized Hough Transform (c.f. Section 5.2.2). This idea was popularized by the
Implicit Shape Model (ISM), which first proposed an extension of the GHT in order to
model the uncertainty inherent in recognizing an object category (Leibe, Leonardis &
Schiele 2008). See Figure 9.4. Given a new test image, the ISM extracts local features
and matches them to the visual vocabulary using soft-matching. Each activated visual
word then casts votes for possible positions of the object center according to its learned
spatial distribution, whereupon consistent hypotheses are searched as local maxima in
the voting space.

In order to model the uncertainty of the object category, the Hough voting step
is formulated with probabilistic weights. The contribution of a feature f observed at
location £ to the object category o,, at position x is expressed by a marginalization over
all matching visual words C;:

plon,x|f,0) =Y _ploa,x[Ci0)  p(Cilf) - (9.1)
—— ~——
Hough vote Matching prob.

The first term corresponds to the stored occurrence distribution for visual word C;, which

is weighted by the second term, the probability that feature f indeed corresponds to this

visual word. In practice, this second term is usually set to ﬁ, where |C*| corresponds

to the number of matching visual words. Thus, each image feature casts an entire
distribution of weighted votes.

As another difference to the standard GHT, the votes are stored in a contin-

uous 3D voting space for the object position x = (x,y,s). Maxima in this space are

efficiently found using Mean-Shift Mode Estimation (Comaniciu & Meer 2002) with a

scale-adaptive kernel K:

Plon) = 23 3 Do i )R (Ge2) - 92

where b is the kernel bandwidth and Vj its volume. Both are adapted according to the
scale coordinate x,, such that the kernel radius always corresponds to a fixed fraction of
the hypothesized object size. This way, the recognition procedure is kept scale invariant
(Leibe & Schiele 2004, Leibe, Leonardis & Schiele 2008).

The search procedure can be interpreted as kernel density estimation for the
position of the object center. It should be noted, though, that the ISM voting procedure
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Figure 9.4: Visualization of the basic idea employed in the ISM. (left) During training, we learn
the spatial occurrence distribution of each visual word relative to the object center. (middle) For
recognition, we use those learned occurrence distributions in order to cast probabilistic votes for
the object center in an extension of the Generalized Hough Transform. (right) Once a maximum
in the voting space has been found, we can backproject the contributing votes in order to get
the hypothesis’s support in the image.

does not conform to a strict probabilistic model, since the vote accumulation implies a
summation of probabilities instead of a product combination, as would be required. This
issue is more closely examined in the recent work by Allan & Williams (2009), Lehmann
et al. (2009). Lehmann et al. (2010) propose a solution motivated by an observed duality
to sliding-window detection approaches.

Once a hypothesis has been selected, all features that contributed to it can be
backprojected to the image, thereby visualizing the hypothesis’s support. As shown in
Section 11.4, this backprojected information can later on be used to infer a top-down
segmentation. The main ideas behind the ISM recognition procedure are summarized
in Figure 9.4.

9.2.3 RANSAC

As noted in Section 5.2.3, there is a certain duality between the Generalized Hough
Transform and RANSAC. Similar to the above-described method based on the GHT, it
is therefore also possible to use RANSAC for detection with part-based object category
models. This could be advantageous with higher-dimensional transformation spaces
(e.g., when not only considering object location and scale, but also image-plane rota-
tion, aspect ratio, or other dimensions of variability). Just as in the case of the GHT), it
becomes important to represent the variability in the contributing part locations appro-
priately. For the GHT, this was done by integrating votes in a certain tolerance window
(corresponding to the mean-shift kernel in ISM). For a RANSAC based approach, the
same role could be fulfilled by the tolerance threshold used for determining inlier fea-
tures. As for specific object recognition, the main difference is again that the GHT
models the estimation uncertainty in the transformation space, while RANSAC repre-
sents this uncertainty in the feature location space. Depending on the transformation
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model and details of the part detection stage, one or the other estimation method may
prove superior. Despite those interesting properties, we are however not aware of any
current recognition approach making use of RANSAC for part-based object category
recognition.

9.2.4 GENERALIZED DISTANCE TRANSFORM

The pictorial structures model goes back to Fischler & Elschlager (1973). It defines an
object as a collection of parts with connections between certain pairs of parts. This can
be represented by a graph G = (V, E), where the nodes V = {vy,...,v,} correspond
to the parts and the edges (v;,v;) € E denote the connections. Let L = {ly,...,1,} be
a certain configuration of part locations. Then the problem of matching the model to
an image is formulated as an energy minimization problem using the following energy
function:

LY = arg mLin Z mz(lz) + Z dij (l“ lj) s (93)

i=1 (vi,vj)EE

where m;(l;) is the matching cost of placing part v; at location I; and d;;(l;,1;) is the
deformation cost between two part locations.

Without further restrictions on the model, the optimal part configuration would
be quite expensive to compute. However, as Felzenszwalb & Huttenlocher (2005) have
shown, if the graph is tree-shaped and if d;; is chosen as a Mahalanobis distance between
transformed locations T;;(l;) and T};(l;) with diagonal covariance M;;,

dij (L, 1;) = (T (1) = T (1) M (T (L) = Tialy) (9.4)

then the optimal configuration can be detected in O(nh), i.e. in time linear in the
number of parts n and the number of possible part locations h.

This is done by applying a Generalized Distance Transform. The first key idea
behind this approach is that, given a tree-shaped graph, the optimal location of any
part only depends on its own appearance (via the matching cost) and on the location
of its parent (via the deformation cost). Both of those terms can be precomputed. For
the matching cost, this is done by independently matching each part with all candidate
image locations, resulting in n part response maps of size h. The deformation cost only
depends on the relative locations of the part and its parent and can therefore be treated
as a fixed template, centered at the part location.

Let us assume for simplicity that the object model has a star shape, i.e. that it
corresponds to a tree of depth 2. The matching procedure starts with the part response
maps of each leaf node of G. Using the energy minimization formulation from eq. (9.3),
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the optimal location of the root node can then be expressed as

Ij] = arg Hlllln (ml(ll) + zn:Dmi (Tu(ll))> (9.5)

=2

1 = U

That is, we write the cost of each candidate location as a sum of the root node’s
response map and a distance-transformed version of each child node’s response maps.
In this view, the response map of each child node is distance transformed with its own
specific deformation template.

The second key idea of Felzenszwalb & Huttenlocher (2005) is that when Maha-
lanobis distances are used as deformation costs, the distance transform can be computed
by a separable convolution operation, resulting in the above-mentioned linear-time al-
gorithm.
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CHAPTER 10

Learning Generic Object Category
Models

This chapter overviews the training procedures and common learning algorithms used
to build generic object category models. We first briefly comment on the expected
annotations in Section 10.1, and then describe training for window-based (Section 10.2)
and part-based (Section 10.3) models in turn.

10.1 DATA ANNOTATION

Current approaches typically rely on supervised learning procedures to build object
models, and thus demand some form of manually labeled data prepared by human
annotators. This may range from identifying parts of objects, to cropping and align-
ing images of objects to be learned, to providing complete image segmentations and
bounding boxes, to weak image-level tags or other auxiliary data indicating an object’s
identity. See Figure 10.1 for examples. Typically, the more informative the annotation
is, the more manual effort is needed to provide it.

Currently, prominent benchmark datasets provide annotations in one of three
forms: (1) “weak supervision”, where one is told the name of the primary object of
interest within each training image, though it may be surrounded by clutter (see the
Caltech-101 and Caltech-256 datasets (Griffin et al. 2007)), (2) bounding box annota-
tions, where any object of interest is outlined with a tight bounding box in the training
images (see the PASCAL VOC challenge datasets (Everingham et al. 2008)), and (3)
pixel-level labeling, where all objects of interest are segmented with tight polygons in
the training images (see the MSRC or LabelMe datasets (Russell et al. 2008, MSR-
Cambridge 2005)). In the latter two styles, typically multiple objects of interest exist
in the same image both at training and test time, while the former assumes that test
images need only be categorized as a whole.

In practice, the accuracy of most current algorithms improves with larger labeled
training sets and more detailed annotations. For example, the very best face detectors
are trained with millions of manually labeled examples, and systems built with tedious
pixel-level annotations generally outperform those with access only to image-level labels
at training time. Given the high manual effort cost of preparing such data, however,
researchers are currently exploring ways in which looser forms of supervision, active
learning, and semi-supervised learning can be integrated into training object recognition
Systems.
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(c) Cropped, aligned images of the ob- (d) Complete segmentation of multiple
ject. objects in scene.
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Figure 10.1: Manual annotation of images used to train recognition systems can take a number
of forms—ordered here from approximately most to least manual effort required. FIGS FROM
YUILLE (a) COOTES (b) papers, and PASCAL (e), CALTECH (f) DATASETS.
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10.2 LEARNING WINDOW-BASED MODELS

A wide variety of classification techniques have been used to successfully build detectors
operating on window-based representations. One of the first choices one must make is
whether to pursue a discriminative or generative model for classification. Discriminative
methods directly model the posterior distribution of the class category given the image
features, whereas generative methods separately model the class-conditional and prior
densities. In effect, this means that a discriminative model focuses the learning effort on
the ultimate decision to be made (e.g., is this window showing a car or not), whereas a
generative one will further model variability about the category that may be irrelevant to
the task. The complexity of these distributions can be difficult to train well with limited
labeled data. On the other hand, generative models can also be advantageous since they
more often directly support probabilistic estimates, can be used for sampling, allow one
to more easily incorporate multiple types of information, and may be interpretable to
some degree.

Empirically, discriminative approaches have tended to result in better recogni-
tion accuracy in practice. One prepares positive and negative examples, and trains the
classifier to distinguish between them. For window-based representations, typically the
positive examples consist of tight bounding boxes around instances of the object cate-
gory, and the negative examples consist of a mix of (1) randomly sampled windows that
do not overlap the true instances of that class by more than 50%, and (2) “hard neg-
atives” that an initially trained classifier fires on. For the classifier choice, researchers
have explored many techniques such as boosting, nearest neighbor classifiers, support
vector machines, neural networks, and conditional random fields. Each has some usual
tradeoffs in terms of computational overhead during learning or predictions, amount
of free parameters, or sensitivity to outlier training points. Furthermore, usually the
particular classifier employed becomes less important the more carefully chosen and
engineered the representation is, or the more complete the annotated training set is.

Overall, the classification-based approach to recognition stands in contrast to ear-
lier recognition work in which object models were more “knowledge-rich”, perhaps using
hand-crafted models to properly capture semantic parts (e.g., the eyes/nose/mouth on
the face (Yuille et al. 1989)), or fitting to compositions of human-observed geometric
primitives (Biederman 1987). Statistical models, on the other hand, leverage labeled
training images to directly learn what aspects of the appearance are significant for
defining the object class.

10.2.1 SPECIALIZED SIMILARITY MEASURES AND KERNELS

Both kernel-based learning algorithms (such as support vector machines) and nearest
neighbor classifiers are frequently employed in object recognition. Support vector ma-
chines (SVMs) can learn patterns effectively in high-dimensional feature spaces and
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Figure 10.2: Matching functions compute a correspondence between sets of local features.
Objects or shapes with a similar set of parts will have a good correspondence between their
features, making such measures useful for recognition. FIGS ARE FROM PAPERS CITED
ABOVE.

have good generalization performance, while nearest neighbor (NN) classifiers have
trivial training requirements and are immediately amenable to multi-class problems.
Furthermore, another appealing aspect for both learning algorithms is their modularity
with respect to what one chooses for a kernel or similarity function to relate the data
instances. Some work in the recognition community has therefore developed kernels
specialized for comparing sets of local feature descriptors, which makes it possible to
connect the effective SVM or NN classifiers with powerful local representations.

As we saw earlier in the specific-object case, establishing the correspondence be-
tween sets of image features is often a telling way to measure their similarity. The
one-to-one or many-to-one matches between contour features have long been used to
evaluate shape similarity (Gold & Rangarajan 1996, Chui & Rangarajan 2000, Belongie
et al. 2002, Carlsson 1998, Johnson & Hebert 1999, Veltkamp & Hagedoorn 1999), and
most model-based recognition techniques require associating the components of the
model template to observed regions in a novel image (Cootes et al. 2001, Felzenszwalb
& Huttenlocher 2005, Weber et al. 20000). The relatively recent advances in local fea-
ture detection and description (reviewed in Chapter 3) have led to an increased focus on
matching-based metrics in the recognition community. Generally, the goal is to extract
an overall similarity score based on the quality of two images’ best correspondence
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(see Figure 10.2), though methods differ in terms of the particular local descriptors
considered and the type of geometric constraints included.

In the following, we first cover the efficient pyramid match kernel approach in
detail. Then we describe various ways to preserve geometry in a matching distance, and
finally discuss methods based on metric learning that can tailor the distance function
to a particular image learning task.

10.2.1.1 The Pyramid Match Kernel

The pyramid match kernel (PMK) is a linear-time matching function that approximates
the similarity measured by the optimal partial matching between feature sets of variable
cardinalities (Grauman & Darrell 2005, 2007b). Aside from offering an efficient means
to judge the similarity between sets of local image features, the PMK also satisfies the
Mercer condition for kernel functions. That means that it produces positive-definite
Gram matrices and can be used within a number of existing kernel-based machine
learning methods, including SVMs.

Consider a feature space V of d-dimensional vectors for which the values have
a maximal range D. The point sets to be matched will come from the input space
S, which contains sets of feature vectors drawn from V: S = {X|X = {x1,...,Xu}},
where each feature x; € V C R?, and m = |X|. For example, the vectors could be SIFT
descriptors (Lowe 2004), and a single set would then contain the descriptors resulting
from all interest points detected or sampled from a single image.

Given point sets X, Y € S, with |X| < |Y]|, the optimal partial matching 7* pairs
each point in X to some unique point in Y such that the total distance between matched
points is minimized: 7* = argmin, >°.  x ||X; — ¥x,||1, where 7; specifies which point
Y, is matched to x;, and || -||; denotes the L; norm. For sets with m features, the
Hungarian algorithm computes the optimal match in O(m?) time (Kuhn 1955), which
severely limits the practicality of large input sizes. In contrast, the pyramid match
approximation requires only O(mL) time, where L =log D, and L < m. In practice,
this translates to speedups of several orders of magnitude relative to the optimal match
for sets with thousands of features.

The main idea of the pyramid match is to use a multidimensional, multi-resolution
histogram pyramid to partition the feature space into increasingly larger regions. At the
finest resolution level in the pyramid, the partitions (bins) are very small; at successive
levels they continue to grow in size until a single bin encompasses the entire feature
space. At some level along this gradation in bin sizes, any two particular points from
two given point sets will begin to share a bin in the pyramid, and when they do, they
are considered matched. The key is that the pyramid makes it possible to extract a
matching score without computing distances between any of the points in the input
sets—the size of the bin that two points share indicates the farthest distance they could
be from one another. A simple weighted intersection of two pyramids defines an implicit
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Figure 10.3: Cartoon example of a pyramid match: each set of descriptors is mapped to a
multi-resolution histogram in the chosen feature space. Histogram intersection is used to count
the number of possible matches at each level of the pyramid, which corresponds to the number
of points from the two sets that are within the maximal distance spanned by that histogram
level’s bin boundaries. Here, there is (a) one possible match at level 0, (b) three possible matches
at level 1, and (c) four possible matches at level 2. To score the number of “new” matches,
the differences between the successive intersections are computed; here there are (1 —0) =1,
(3—1)=2, and (4 — 3) = 1 new matches added for (a),(b), and (c), respectively. Each match
count is weighted according to the size of the bins at the given level, so that matches between
more distant points contribute less significantly to the matching similarity.
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partial correspondence based on the smallest histogram cell where a matched pair of
points first appears. See Figure 10.3.

Formally, let a histogram pyramid for input example X € S be defined as: ¥(X) =
[Hy(X),...,Hr 1(X)], where L specifies the number of pyramid levels, and H;(X) is
a histogram vector over points in X. The bins continually increase in size from the
finest-level histogram H, until the coarsest-level histogram H_;.!

The pyramid match kernel defines similarity between two input sets Y and Z as
the weighted sum of the number of new matches per level:

L—-1

Kpyvr (2(Y), ¥(Z)) = Zwi (I(Hi(Y)aHi(Z)) . I(Hi—l(Y)vHi—l(Z)))a

=0

where Z (H;(Y), H;(Z)) denotes the histogram intersection between the histograms com-
puted for sets Y and Z at pyramid level ¢, that is, the sum of the minimum value
occurring for either of the sets in each bin. This function efficiently extracts the number
of new matches at a given quantization level by the difference in successive levels’ his-
togram intersection values. For example, in Figure 10.3, there is one match at the finest
scale, two new matches at the medium scale, and one at the coarsest scale. The number
of new matches induced at level i is weighted by w; = == to reflect the (worst-case)
similarity of points matched at that level. This weighting reflects a geometric bound on
the maximal distance between any two points that share a particular bin. Intuitively,
similarity between vectors at a finer resolution—where features are more distinct—is
rewarded more heavily than similarity between vectors at a coarser level.

As described thus far, the pyramid match cares only about agreement between
the appearance of descriptors in two images. That is, the geometry of the features need
not be preserved to achieve a high similarity score. One can encode the image position
of each feature by concatenating the (z,y) coordinates onto the end of the appearance
descriptor, thereby enforcing that matched features must both look the same and occur
with a similar layout. However, as is usually the case when adjoining features of different
types, this approach may be sensitive to the scaling of the different dimensions.

The spatial pyramid match kernel, introduced by Lazebnik and colleagues (Lazeb-
nik et al. 2006), provides an effective way to use the global image positions of features
in a pyramid match. The idea is to quantize the appearance feature space into visual
words, and then compute the PMK per visual word, where this time the pyramids are
built on the space of image coordinates (see Figure 10.4).

1For low-dimensional feature spaces, the boundaries of the bins are computed simply with a uniform partitioning
along all feature dimensions, with the length of each bin side doubling at each level. For high-dimensional feature
spaces (e.g., d > 15), one can use hierarchical clustering to concentrate the bin partitions where feature points
tend to cluster for typical point sets (Grauman & Darrell 2006), similar to the quantization proposed by Nister
et al. and discussed in Section 4.2.2. In either case, a sparse representation is maintained per point set that
maps each point to its bin indices.
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Figure 10.4: The spatial pyramid match kernel matches bags of local features based on both
their visual word agreement as well as their closeness in image position. Here the different
symbols (plus, circle, etc.) denote occurrences of distinct visual words. Matches (intersections)
are only counted between words of the same type, and the pyramid bins are constructed in the
space of the 2D image coordinates; the total match score sums over all word types. FIGURE IS
FROM LAZEBNIK ET AL CVPR 2006.

Specifically, suppose we have a visual vocabulary comprised of M visual words
(see Section 4.2 for a discussion on vocabulary formation). Expand the notation for a set
of features X from above to include each descriptor’s image position and word index:
X ={(X1,Z1,Y1,W1), - s (Xons Trny Yms W) }, where each w; € {1,...,M}. The spatial
pyramid is a multi-resolution histogram composed of uniform bins in 2D image space.
Rather than enter all features into a single pyramid, the spatial pyramid match com-
putes one pyramid per visual word. Thus each bin of the histogram pyramid for the
J-th visual word counts how many times that word occurs in set X within its spatial bin
boundaries. Denote that pyramid as ¥;(X). The spatial pyramid match kernel (SPMK)
computes the sum over all words’ pyramid match scores:

Kspux (¥(Y),¥(Z)) = ZICPMK (W;(Y), ¥;(Z)). (10.1)

With a larger vocabulary, there are more kernel terms to compute and sum; however,
since larger vocabularies also increase sparsity, the cost is generally manageable in
practice.
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The spatial PMK encodes positions of features in a global, translation-sensitive
manner; the highest similarity goes to feature sets with the same 2D layout relative to
the corners of the image. This kind of spatial regularity is amenable to images of scene
categories (Lazebnik et al. 2006) (e.g., coast, mountains, kitchen, dining room), where
one can expect the main structures to be laid out consistently within the field of view,
or else for images that have been cropped to the object of interest. The 2D geometry
constraints are not appropriate for matching unaligned images of objects, although
some extensions have shown how to generate regions-of-interest on which to use the
spatial PMK (Chum & Zisserman 2007). The pyramid match has also been adapted
and extended for use within related tasks, such as near-duplicate detection (Xu et al.
2008), medical image classification (Hu et al. 2006), video retrieval (Choi et al. 2008),
human action recognition (Lv & Nevatia 2007), and robot localization (Murilloa & et al.
2007).

10.2.1.2 Matching Distances Accounting for Inter-Feature Geometry

We have already seen a form of spatial verification that is often done following feature
indexing or voting (as in the generalized Hough transform described in Chapter 5), in
which specific objects are recognized by verifying that the collected matches together
do in fact relate a model (training) image to the input according to a parameterized
transformation. In this section we briefly overview methods that incorporate geomet-
ric or spatial relationships among the local features into the set-to-set matching dis-
tance itself. For recognition applications, these measures are often used within a simple
nearest-neighbor classifier.

One approach is to attempt to compute the best possible assignment between
features that minimizes the error between the sets’ positions when one is aligned onto
the other according to some specified parametric transformation. The error function
penalizes for geometric mismatches, and may also include a term to express the features’
appearance agreement as well. For example, the shape context approach of Belongie and
colleagues obtains least cost correspondences with an augmenting path algorithm and
estimates an aligning thin-plate-spline transform between two input point sets (Belongie
et al. 2002). Such iterative methods have been designed for shape matching (Chui &
Rangarajan 2000, Gold & Rangarajan 1996, Belongie et al. 2002), where the inputs are
assumed to be contour-based image descriptions. Thus they are best suited for silhouette
inputs or sets of edge points (e.g., handwritten digits or trademark symbols). In the
special case of closed, solid silhouette shapes, the geometric relationships between points
can be treated as a 1D ordering constraint, allowing the use of dynamic programming-
style solutions to compute the match cost (Thayananthan et al. 2003).

A linear assignment matching function (as implied for instance by the pyramid
match or spatial pyramid match) only penalizes for disagreement between the descrip-
tors themselves, thus capturing only local, “first-order” properties. Recent work shows
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(a) Example low-distortion correspondences

J=>J °/
Model J R Test
features i Si'j' features
@ @
i— i

(b) Pairwise distortion between matched features

Figure 10.5: (a) Matching functions that account for the geometry between pairwise local
features can yield smooth matching assignments. These example results are from (Berg et al.
2005). The leftmost images are exemplars with some feature points marked with colored circles.
The next image shows the correspondences found, as indicated by the matching colors. White
dots are unmatched points. The third image in each row shows all feature points on the ex-
emplar, and the rightmost images show the result of fitting a thin plate spline warp based on
the computed correspondences. (b) Sketch of pairwise distortion geometry. If model point j is
matched to test point j/, and model point ¢ is matched to test point i’, we incur a distortion
cost relative to the differences in length and direction between the vectors Ry; and Sy/j. TOP
FIGURE IS FROM BERG’s CVPR 2005 or TR paper. BOTTOM FIG IS FROM HIS SLIDES.

how recognition can benefit from capturing second-order geometric relationships be-
tween the pairs of matched features. In contrast to the shape matching methods that
fit a parametric transformation, this type of strategy incorporates the constraints be-
tween the points in a non-parametric fashion.

For example, Berg and colleagues show how to compute the (approximately) least-
cost correspondences between pairs of local features, such that the distortion between
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Figure 10.6: Examples of semi-local descriptors that incorporate loose to rigid geometric con-
straints on top of local features. FIGURES ARE FROM PAPERS CITED ABOVE.

matched pairs is also minimal (Berg et al. 2005). In this case, a matched pair composed
of features at points (i, 7) in one image and points (', ') in the other entails a distortion
equal to the difference in direction and length of the vectors connecting the pairs in
either image. See Figure 10.5(b). In related work, Leordeanu et al. (2007) show how
to learn a discriminative set of paired feature parameters on contour features, and
use an efficient spectral matching technique to approximate the quadratic assignment
problem (Leordeanu & Hebert 2005). In either case, since all points participate in
paired constraints, the geometry preferences are “interlocked”, and computed matches
are generally spatially smooth (see image examples in Figure 10.5).

Rather than incorporate the paired constraints into the matching optimization,
a more indirect method is to encode the inter-relationships between features as an
enhanced input descriptor (Sivic & Zisserman 2004, Lazebnik et al. 2004, Savarese et al.
2006, Ling & Soatto 2007, Agarwal & Triggs 2006, Yuan et al. 2007, Quack et al. 2007,
Lee & Grauman 2009a). The general idea is to build more specific features that reflect
some geometry and aggregate nearby features into a single descriptor (see Figure 10.6).
Discrete visual words are convenient for these kinds of approach, since they allow one
to count the co-occurrence and spatial relationships between the features present in an
image.

For example, Sivic & Zisserman (2004) propose a loose neighborhood matching
definition for configurations of viewpoint invariant features. Let one neighborhood be
the convex hull of an elliptical local feature region p and its IV spatially nearest neighbors
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in the same image, and let the second neighborhood be the convex hull of N neighbors
surrounding a candidate matching region p’ in another image; the configurations are
deemed matched if a fraction of the N regions also match (see top right of Figure 10.6).
For a neighborhood definition that is more selective about the geometric layout of
component features, Lazebnik et al. (2004) propose a correspondence-based approach
that identifies groups of local affine regions that remain approximately rigid across
multiple instances of an object class (see bottom right of Figure 10.6).

Several other methods capture semi-local neighborhoods that fall in between on
the spectrum of geometric rigidity: Savarese et al. (2006) design a correlaton feature that
encodes how the co-occurrence of a pair of visual words changes as a function of distance,
yielding a translation and rotation invariant description of neighborhood appearance
layout. Their approach builds on the original definition of correlograms (Huang et al.
1999), which consists of a co-occurrence matrix of pairs of color values as a function
of distance. In related work, Ling & Soatto (2007) propose the prozimity distribution
kernel to compare bags of local features while taking into account relative layout. The
higher order features are represented by tallying a cumulative distribution of spatially
co-occurring visual words, though using the ranked neighborhood ordering rather than
absolute distance as above. In work by Agarwal & Triggs (2006), neighborhoods are
collected hierarchically in space, while Quack et al. propose a tiled region centered
on each interest point to bin nearby visual words (Quack et al. 2007) (see left image
in Figure 10.6). Lee and Grauman propose a semi-local neighborhood descriptor the
reflects both the relative order of spatial proximity as well as the spatial direction
in which the features are located with respect to each patch center (Lee & Grauman
2009a).

Overall, there is a tradeoff between the specificity of the features or matching
metrics, versus their flexibility (to viewpoint variation, deformations, etc.). Larger and
more rigid configurations of local features will be more selective when matching, and
higher-order geometric constraints will more strictly preserve layout. On the other hand,
with more variable viewing conditions, the weaker feature constraints—and even bags
of words models—can offer more robustness. Note that whereas the distances discussed
in this section are for matching generic sets of features, below in Section 10.3 we will dis-
cuss learning procedures for part-based models, which use supervision to select common
object parts and then explicitly represent their spatial layout.

10.2.1.3 Learned Metrics for Image-Matching

A standard means of learning about visual categories is to train supervised classifiers
from labeled images. Another way to exploit the labeled data is to learn a distance
function. A few recent recognition approaches have considered how a learned distance
metric can yield better image retrieval or nearest neighbor comparisons. Like the match-
ing functions above, these approaches essentially put more power into the metric, often
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allowing simpler classifiers to be used on top; however, unlike the methods above, these
techniques exploit annotated data to refine the distance function itself.

A good distance metric between images accurately reflects the true underlying
relationships, e.g., the category labels or other hidden parameters. It should report
small distances for examples that are similar in the parameter space of interest (or
that share a class label), and large distances for unrelated examples. Recent advances
in metric learning make it possible to learn distance functions that are more effective
for a given problem, provided some partially labeled data or constraints are available
(see Yang (2006) for a survey). These techniques improve accuracy by taking advantage
of the prior information; typically, they optimize parameters to the metric so as to best
satisfy the desired constraints.

Frome and colleagues have shown the advantages of learning the weights to
attribute to each local image feature when comparing with a correspondence met-
ric (Frome, Singer & Malik 2007, Frome, Singer, Sha & Malik 2007). They introduce
a large-margin distance learning approach that aims to preserve relative distance con-
straints between examples. This serves as a form of discriminative feature selection,
identifying those local parts per training example that should have a good match when
compared to images from the same category. Jain et al. show how to perform scalable
similarity search under learned Mahalanobis metrics or kernels, with results improving
the accuracy of various base kernels for image comparisons (Jain et al. 2008).

Another line of work seeks to learn good combinations of kernel functions. Multi-
ple kernel learning takes several kernel matrices as input, together with the associated
training labels, and optimizes the weights on each kernel so that the resulting combined
kernel is optimally aligned with the “ideal” kernel matrix consisting of maximal values
for in-class pairs and minimal values for out-of-class pairs (Lanckriet et al. 2004, Bach
et al. 2004, Cristianini et al. 2001). The promise of multiple kernel learning has been
shown by a number of recent results in object recognition and detection (Kumar &
Sminchisescu 2007, la Torre Frade & Vinyals 2007, Varma & Ray 2007). The general
approach is useful to automatically choose among kernels parameterized with different
values (e.g., the normalization constant in a Gaussian RBF kernel, or the weights asso-
ciated with each level in the PMK), or to choose among image feature types for a given
object categorization task.

Aside from optimizing distances to respect categorical labels (i.e., object class
names), metric learning can be employed to tweak a generic measure towards performing
better on a visual retrieval task with special preferences. For example, methods have
been developed to learn a distance function that will better rank faces according to
perceptual similarity (Holub et al. 2007, Chopra et al. 2005), or to select the most
effective hash functions mapping similar human 3D pose configurations to the same
bucket (Shakhnarovich et al. 2003). Methods to improve image retrieval by selecting
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relevant features using boosting have also been explored (Tieu & Viola 2000, Hertz
et al. 2004).

10.3 LEARNING PART-BASED MODELS

Having described methods for learning in window-based models, we now overview the
training process for three representative part-based models.

10.3.1 LEARNING IN THE CONSTELLATION MODEL
The Constellation Model has been designed with the goal of learning with weak su-
pervision. That is, neither the part assignments, nor even object bounding boxes are
assumed to be known — only the image labels (target category or background) are pro-
vided. Given such a training dataset, the goal of the learning procedure is to find the
maximum likelihood estimate for the model parameters 6,7, i.e. the parameter setting
that maximizes the likelihood for the observed data X, S, A from all training images.
This is achieved using the ezpectation mazimization (EM) algorithm. Starting
from a random initialization, this algorithm converges to a (locally optimal) solution
by alternating between two steps. In the E-step, it computes an expectation for the
part assignments given the current value of 6. The M-step then updates 6 in order to
maximize the likelihood of the current assignment. Since the E-step involves evaluating
the likelihood for each of the N¥ possible feature-part assignments, efficient search
methods are needed to keep the approach computationally feasible. Still, the authors
report training times of 24-36 hours for a single-category model trained on 400 class
images in their original paper (Fergus et al. 2003). This is partially also due to the
large number of parameters required to specify the fully-connected model (according to
(Fergus et al. 2003), a 5-part model needs 243 parameters and a 6-part model already
requires 329 parameters), which in turn impose a requirement on the minimum training
set size. Those constraints together restrict the original approach to a small set of only
5-6 parts.

10.3.2 LEARNING IN THE IMPLICIT SHAPE MODEL

The ISM has been designed for supervised learning and requires labeled training exam-
ples. In the least case, the labels should include a bounding box for each training object,
so that the training algorithm knows the object location and scale. In order to take full
advantage of the ISM’s subsequent top-down segmentation stage, the training examples
should however also include a reference segmentation (e.g. given by a polygonal object
boundary as available in the LabelMe database (Russell et al. 2008) or by a pixel-wise
figure-ground map). Due to its simple Star Model topology, the ISM can treat each ob-
ject part independently and therefore requires only relatively small training sets (50-150
examples per visual category are usually sufficient).
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Figure 10.7: Visualization of the ISM training procedure (Figure from (Leibe, Leonardis &
Schiele 2008)).

The full ISM training procedure is visualized in Figure 10.7. The first step is to
build up a visual vocabulary (the appearance codebook) from scale-invariant local fea-
tures that overlap with the training objects, using methods as presented in Section 4.2.
Next, the ISM learns a spatial occurrence distribution for each visual word. For this,
we perform a second pass over all training images and match the extracted features to
the stored vocabulary using a soft-matching scheme (i.e., activating all visual words
within a certain distance threshold). For each visual word, the ISM stores a list of all
positions and scales at which this feature could be matched, relative to the object cen-
ter. This results in a non-parametric probability density representation for the feature
position given the object center. As mentioned in Section 8.2.3, the key idea behind the
following recognition procedure is then that this distribution can be inverted, provid-
ing a probability distribution for the object center location given an observation of the
corresponding feature.

10.3.3 LEARNING IN THE PICTORIAL STRUCTURE MODEL

Part-based models allow the recognition procedure to adapt to deformable object cate-
gories and to deliver more robust recognition results than a holistic detector. As men-
tioned before, a main difference between the ISM approach and the Pictorial Structures
model rests in the interpretation of what constitutes an object part. While the ISM
considers an object as an assembly of potentially hundreds of local features, the Pic-
torial Structure model is based on the notion of semantically meaningful object parts.
While this typically restricts the model to a relatively small number of such parts, an
important advantage is that it can reason about the presence or absence of individual
parts, e.g. to encode the knowledge that a human has two legs (and any additional leg
found nearby must belong to a different person).

However, an important challenge for such an approach is to learn the correspond-
ing part models such that they capture reoccurring and discriminative object structures.
While early part-based approaches relied on hand-labeled part locations (Mohan et al.
2001, Heisele et al. 2001, Mikolajczyk et al. 2004), such a procedure has the disadvan-
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Figure 10.8: Learned part-based representations of the Deformable Part-based Model (Felzen-
szwalb et al. 2008, Felzenszwalb, Girshick, McAllester & Ramanan 2010) for several categories of
the PASCAL dataset (Everingham et al. 2010) (Figure from Felzenszwalb, Girshick, McAllester
& Ramanan (2010)).

tage of requiring additional manual annotation and carries the risk of missing effective
part locations.

For this reason, Felzenszwalb et al. (2008), Felzenszwalb, Girshick, McAllester &
Ramanan (2010) propose an automatic procedure for learning the part locations from
bounding box annotations around the objects of interest. They cast the problem as
a latent SVM formulation (which is a special case of a Multiple Instance SVM (MI-
SVM)). Given training examples z, part locations z, resulting feature vectors ®(z, z),
and model parameters [, the goal is to optimize

fole) = max - B(a,z) (10.2)
where the part locations z for each training example are considered as latent variables.
As latent SVMs are non-convex, Felzenszwalb et al. (2008), Felzenszwalb, Girshick,
McAllester & Ramanan (2010) resort to an iterative “coordinate descent” training pro-
cedure. In each iteration, they

1. Relabel the positive examples, i.e. they select the highest scoring part locations z
for each positive training example;

2. Optimize the parameters 3 by solving a convex optimization problem.

Note that this procedure does not adapt the latent values for the negative training ex-
amples, which would likely not lead to a good model. For efficient training, the optimiza-
tion step itself is performed using stochastic gradient descent (please see (Felzenszwalb,
Girshick, McAllester & Ramanan 2010) for details).
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Figure 10.8 shows the models learned with this procedure for several object cate-
gories. As can be seen, the learned linear SVM templates are readily interpretable, e.g.
showing the human contour and body part locations used in the corresponding detector.




104

CHAPTER 11

Example Systems: Generic Object
Recognition

In the following, we present several successful object recognition approaches in more
detail and show how they employ the concepts explained in the previous chapters.

11.1 THE VIOLA-JONES FACE DETECTOR

Frontal faces are a good example of the type of object category well-suited by a window-
based representation; there is high regularity in the 2D texture patterns of different
face instances, if we consider just the rectangular patch centered on the face. The
Viola-Jones sliding window face detector is a milestone in generic object detection that
uses discriminative learning to discover these regularities (Viola & Jones 2001). The
technique relies on an ensemble of weak classifiers, each one of which captures some
simple contrast-based feature in the candidate face window. While training is fairly
expensive and assumes availability of a large number of cropped frontal face instances,
detection is very fast due to the use of integral images and an attentional classifier
cascade. The detector runs in real time and is now widely used to find people in images
or video.

In the following, we overview the main steps of the Viola-Jones method in order
to give a concrete end-to-end instance of training and applying an object detector.

11.1.1 TRAINING PROCESS
e Collect a training set of cropped face images (positive examples) and non-face
images (negative examples), all scaled to a common base resolution, e.g., 24 x 24
pixels.

e Designate a library of candidate rectangular features. Each rectangular feature is a
Haar-like filter parameterized by its position relative to the current sliding window
location, its scale, and its type (i.e., orientation, number of rectangles). Figure 11.1
shows three examples in the left column. The output of a given feature/filter on
an image is the sum of the intensities at pixels within the feature’s gray shaded
regions, minus the sum of the intensities in the white shaded regions. To give
a sense of scale: Viola and Jones designate a bank of 180,000 such features for
consideration.
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Figure 11.1: The detector training procedure uses AdaBoost to both identify discriminative
rectangular features and determine the weak classifiers.

e Compute an integral image for each input. The value in an integral image at
position (x,y) is the sum of the intensities in the original image above and to the
left of (z,y). It is a useful intermediate representation that allows one to compute
any rectangular sum within the image using only four array references.

e Compute the rectangular feature responses on all training images. Use the integral
image to reduce computational expense; each feature response requires only 6-8
array references.

e Use the AdaBoost algorithm (Freund & Schapire 1995) and the feature responses
computed above to sequentially select a set of discriminative rectangular features.
AdaBoost builds a strong classifier out of a set of weighted “weak” classifiers, each
of which is performs better than chance according to a weighted error measure on
the training data. At each round of boosting, the instances that are incorrectly
classified by weak classifiers selected in earlier rounds are given relatively more
weight. The intuition is to focus the learners on remaining errors; proofs about
the generalization performance justify the strategy formally (Freund & Schapire
1995, Schapire et al. 1997).

— For each weak classifier, use a simple decision stump that checks the value
of a particular rectangular feature against a threshold. Figure 11.1 illustrates
the selection process. Let f;(x) denote the rectangular feature output for an
image x, and let 6, be the threshold minimizing the weighted error on the
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Figure 11.2: Recap of the basic pipeline in the Viola-Jones face detector. Top left face patches
are from Viola CVPR 2001 figure 6.

training data at round t for that feature. The weak classifier is then

+1, if ft(X) > Ht

-1, otherwise (11.1)

he(z) = {

Note that the rectangular feature type and threshold together define one
selected feature.

— The final strong classifier distinguishes face sub-windows from non-face sub-
windows, and is the simple weighted sum of the weak classifiers selected with
T rounds of boosting:

h($) — +17 if Z?:l atht(x) > %Z?:l Qy (11 2)
-1, otherwise ’ '

where «; is the classifier weight for round ¢ set by the AdaBoost algorithm,
and is inversely related to the error that particular weak learner had.

11.1.2 RECOGNITION PROCESS
e Given a novel test image, use the sliding window search paradigm: apply the strong
classifier to each sub-window in the image in turn. “Each window” entails centering
a sub-window at every position and at multiple scales.

e Compute only the selected T rectangular feature responses, again using an integral
image for speed.

e Classify the sub-window as face or non-face according to the binary output.
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Figure 11.3: Illustration of the attentional cascade. Early classifier stages use few features to
remove “obvious” negatives; later stages use more features to discern if the surviving candidate
sub-windows may be true detections.

Figure 11.2 summarizes the pipeline outlined thus far. For more details on each
step, please see (Viola & Jones 2001).

11.1.3 DISCUSSION

Typically detection algorithms are evaluated according to their trade-offs in false pos-
itives and detection rates, using ROC or precision-recall curves. Thus for evaluation
against a ground truth dataset, one would keep the raw classifier outputs (Zthl ahy(x))
for all sub-windows and all test images, sort them, and sweep through thresholds from
—o0 to 0o to draw an ROC curve.

Another important aspect of the Viola-Jones detector is its use of a classifier
cascade to reduce computational time on novel test images (see Section 9.1.1). The
attentional cascade they use consists of a series of strong AdaBoost classifiers, where
each subsequent classifier stage uses more rectangular features and yields a lower false
positive rate. See Figure 11.3. Essentially, classifiers in the earlier stage are cheap to
run and immediately dismiss only clear non-face sub-windows. Each sub-window that
survives a stage goes on to the next (more expensive) stage, and the process continues.
To control the false negative rate in AdaBoost, one reduces the threshold so as to keep a
high detection rate with a possibly large false positive rate. For example, in the original
Viola-Jones detector, the first stage in the cascade uses only two rectangular features,
and adjusts the threshold to achieve a 100% detection rate and a 40% false positive
rate, as determined on a labeled validation set. When building the cascade, one can
also isolate helpful “hard negative” instances by taking those non-faces that are false
positives according to the cascade thus far.
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Figure 11.4: Detection procedure for the HOG person detector (Dalal & Triggs 2005). FIG-
URE FROM DALAL’s PHD SLIDES.

Note that this face detector is specialized for the viewpoint used in the training
images. In other words, we would need to build separate detectors for profile and frontal
faces. This is a direct result of the style of features used, which are location-specific
relative to the sliding sub-window, and therefore require approximate alignment between
instances and a regular 2D texture pattern. For similar reasons, aside from faces, the
detector would only be applicable to categories that have a similar structure and shape
consistency.

11.2 THE HOG PERSON DETECTOR

As a second example of a discriminative window-based approach object detection, we
briefly overview Dalal and Triggs’ histogram of oriented gradients (HOG) person detec-
tor (Dalal & Triggs 2005). As with faces, to some extent upright people (“pedestrians”)
have a fairly regular 2D texture that is sufficiently captured in a sub-window. In fact,
the basic framework shares many aspects with the Viola-Jones face detector described
above, with the main distinction being the design of the appearance representation and
feature learning.

The main idea of the HOG detector is to extract a dense gradient-based descriptor
from the window of interest, and classify it as “person” or “non-person” using a linear
support vector machine (SVM) classifier. While closely related descriptors and detec-
tion strategies have been explored previously Freeman & Roth (1995), Papageorgiou
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& Poggio (2000), Lowe (2004), Dalal and Triggs carefully study the empirical effects
of a number of choices in the feature design for person detection—such as the manner
of gradient computation, the means of normalization, or grid cell shapes—and show
strong performance on benchmark datasets (Dalal & Triggs 2005).

A HOG descriptor for an image sub-window consists of a concatenated series of
gradient histograms. To form the histograms, one first divides the sub-window into
small spatial “cells”; each cell produces a histogram based on the gradient values and
directions for all pixels within the spatial extent of the cell. (Nine orientation bins
and 8 x 8 pixel cells are used.) As in SIFT and other spatially pooled histograms,
this step gives robustness to small shifts or rotations. In order to provide robustness to
illumination effects, one contrast-normalizes the local gradient responses before entering
them into the histogram. Dalal and Triggs define a block-based normalization that uses a
local measure of the energy in regions larger than a cell (see Figure 11.4). The final HOG
descriptor for the window consists of the normalized histograms from an overlapping
dense grid of blocks.

To train a HOG detector, one simply collects positive and negative examples,
extracts their HOG descriptors, and trains a linear SVM in HOG space. To apply
the detector on a novel image, one scans the detection window at all positions and
scales (using an image pyramid), and then performs non-maximum suppression. See
Figure 11.4 for a sketch of the detection process.

In Section 11.5 below, we outline a discriminative deformable part-based model
that also uses HOGs and linear filters, but expands the model to include a set of object
part filters whose placement can deform relative to the primary (“root”) object filter.

11.3 BAG-OF-WORDS IMAGE CLASSIFICATION

As a third example of an end-to-end generic category recognition approach, we overview
what is now a standard paradigm for image classification: SVM classification on bag-of-
words descriptors. See Figure 11.5. The basic pipeline was first proposed by Csurka et al.
(2004), and has since been used and refined by many researchers. Today it is responsible
for some of the very best recognition results in the literature; many methods competing
on benchmark datasets (e.g., the Caltech or PASCAL VOC) employ some variant of
bag-of-words classification.

11.3.1 TRAINING PROCESS
e Collect training image examples from each category of interest.

e Detect or sample local features in all training images. For sparser local features,
use one or more interest operators (e.g., DoG, MSER, Harris, etc; see Chapter 3).
For denser local features, sample uniformly across the image at multiple scales.
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Figure 11.5: Bag-of-words image classification pipeline.

e Extract a descriptor (e.g., SIFT or SURF) at each interest point or sampled point.

e Form a visual vocabulary: sample a corpus of descriptors from the training images,
quantize the descriptor space (typically using k-means), and store the resulting
“visual words”. These words have the same dimensionality as the descriptors (see
Section 4.2).

Map each training image’s local descriptors to their respective visual words, yield-
ing a single k-dimensional histogram for each training image.

Select a kernel function, and use it to compute the pairwise similarities between
all training images. For N total training images, we now have an N x N kernel
matrix.

Use the kernel matrix and labels to train an SVM.

11.3.2 RECOGNITION PROCESS
e Given the novel test image, repeat the feature detection, description, and his-
togram steps as during training, using the same visual vocabulary.

e Classify the image using the SVM. For non-linear kernels, this entails computing
kernel values between the novel bag-of-words histogram and the training instances
selected as support vectors.

11.3.3 DISCUSSION

These steps distill the core of a bag-of-words image classification technique. The major
choices to be made by the practitioner are which feature extraction method to use
(how to sample, which descriptor), how to perform quantization (flat, hierarchical,
which clustering algorithm, etc.), and what kernel function to employ. Refer back to
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Sections 4.2 and 8.1.4 for more background on these choices. The bag-of-words is a
holistic representation, and is often used for image-level classification, where we assume
that there is a prominent object of interest in the midst of background clutter. However,
as usual, it is straightforward to instead train with bounding box annotations and test
with a sliding window scan.

Among the most frequently used non-linear kernels are the spatial pyramid match
and y?-kernel. The y2-kernel uses a generalized Gaussian RBF kernel, replacing the
usual L, norm with the x? distance. The spatial PMK provides coarse spatial pooling
for loose layout information. Both kernels are well-suited to histogram representations.
We list the SVM classifier specifically due to its widespread use and top empirical
results, though of course other classifiers could be interchanged.

Recent research shows that an adaptation of the above feature extraction process
to use sparse coding and max pooling can further enhance results (Yang et al. 2009,
Wang, Yang, Yu, Lv, Huang & Gong 2010, Boureau et al. 2010). In that case, one
represents each descriptor as a sparse combination of bases (rather than quantizing to
a single word) and then takes the maximum within weight associated with each basis
in a spatial region (rather than using the total count of each word).

11.4 THE IMPLICIT SHAPE MODEL

The Implicit Shape Model (ISM) provides a successful example for a feature/part-
based recognition approach based on a Star Model. In contrast to the three previous
approaches, it is not based on discriminatively trained classifiers, but on a relatively
simple combination of local feature contributions in a GHT. The ISM and its exten-
sions were successfully applied to a variety of object categories, in particular for de-
tecting pedestrians (Leibe et al. 2005), cars, motorbikes, and cows (Leibe, Leonardis &
Schiele 2008, Leibe et al. 2007). Compared to window-based approaches such as HOG,
a strength of the ISM is that it can deliver robust detection under partial occlusion and
significant articulation.

11.4.1 TRAINING PROCESS

The ISM has been designed for supervised learning and requires labeled training ex-
amples. In the least case, the labels should include a bounding box for each training
object, so that the training algorithm knows the object location and scale. Given such
training data, the ISM first extracts and clusters local features in order to create a
visual vocabulary and then learns a non-parametric spatial occurrence distribution for
each visual word, as described in Section 10.3.2.
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Figure 11.6: Visualization of the ISM recognition procedure (Figure from Leibe, Leonardis &
Schiele (2008)).

11.4.2 RECOGNITION PROCESS

The ISM recognition procedure then follows the idea of the Generalized Hough Trans-
form, as explained in Section 9.2.2. Given a new test image, the ISM extracts local
features and matches them to the visual vocabulary using soft-matching. Each acti-
vated visual word then casts votes for possible positions of the object center according
to its learned spatial distribution, whereupon consistent hypotheses are searched as
local maxima in the voting space. This procedure is visualized in Figure 11.6.

11.4.3 VOTE BACKPROJECTION AND TOP-DOWN SEGMENTATION

As already briefly mentioned in Sec. 9.2.2, the ISM recognition procedure does not stop
at the voting stage, but also includes a back-projection capability. Once a hypothesis
has been selected in the voting space, all features that contributed to it can be back-
projected to the image, thereby visualizing the hypothesis’s support. The back-projected
support already provides a rough indication where the object is in the test image (see
Fig. 11.6(bottom)). As the sampled features still contain background structure, this is
however not a precise segmentation yet.

The ISM includes a mechanism to refine the back-projected information in order
to infer a pixel-wise figure-ground segmentation from the recognition result. For this, it
requires a reference segmentation to be provided together with each training example.
This reference segmentation could, e.g., be given by a polygonal object boundary (as
available in the LabelMe database (Russell et al. 2008)) or by a manually annotated
figure-ground map. As the training segmentation only has to be provided for relatively
small training sets (50-150 examples per visual category are usually sufficient), this is
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Figure 11.7: (left) Visualization of the ISM top-down segmentation procedure. (right) Exam-
ple detection and segmentation results on motorbikes (Figures from Leibe, Leonardis & Schiele
(2008)).

not an overly big restriction, and the recognition results are significantly improved as
a consequence.

The main idea behind the top-down segmentation procedure is that instead of
back-projecting the original feature appearance, we can associate any kind of meta-
information with the back-projected features. Each vote in the ISM is generated by a
matched visual word hypothesizing a particular occurrence location, where the corre-
sponding feature was observed on a certain training image. If a reference segmentation
is given for this training image, we can thus associate a local figure-ground patch with
this feature occurrence. By combining the figure-ground patches associated with all
back-projected votes, we obtain a dense figure-ground segmentation, as shown in the
last image of Fig. 11.6.

In the following, we present a short derivation of this procedure. We are interested
in the probability that a pixel p is figure or ground given the object hypothesis, i.e.
p(p=figure|o,,x). This probability can be obtained by marginalizing over all features
containing this pixel and then again marginalizing over all vote contributions from those
features to the selected object hypothesis (Leibe & Schiele 2003, Leibe, Leonardis &
Schiele 2008):

p(p = figure|o,,x) = E
Z Z p(p:ﬁg'|on’x’Ci7£k)p(0n>x|fk>£k)%

w \Z,-/ Stored f/g mask Vote weight
all visual for each vote

all contrlbut}ng words matched
features containing to feature fy

pixel p

(11.3)

In this formulation, p(p=fig.|o,,x,C;, ;) denotes the stored figure-ground masks for
the votes contributed by feature (fy, ¢x). The priors p(fi,¢x) and p(o,,x) are assumed
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Figure 11.8: As shown by Thomas et al. (2007, 2009a), the ISM top-down segmentation
procedure can be generalized to also infer other kinds of meta-data, such as part labels, depth
maps, or surface orientations. FIGURES FROM Thomas et al. (2009q)

to be uniform. This means that for every pixel, we effectively build a weighted average
over all local segmentation masks stemming from features containing that pixel, where
the weights correspond to the features’ contribution to the object hypothesis. The final
object segmentation is then obtained by computing the likelihood ratio of the figure
and ground probability maps for every pixel, as shown in Figure 11.7.

As shown by Thomas et al. (2007, 2009a), this top-down segmentation procedure
can be further generalized to also infer other kinds of meta-data annotations. This
includes discrete properties such as part labels, continuous values such as depth maps,
as well as vector-valued data such as surface orientations. Some example results are
shown in Figure 11.8.

11.4.4 HYPOTHESIS VERIFICATION

Finally, the extracted object hypotheses are verified in a model selection procedure,
which selects the set of hypotheses that together best explain the image content. Briefly
stated, this procedure expresses the score of a hypothesis as the sum over its per-pixel
p(figure) probability map. If two hypotheses overlap, then they compete for pixels, as
each pixel can only be explained by a single hypothesis. Thus, each pair of hypothe-
ses incurs an interaction cost that is subtracted from their combined scores. A new
hypothesis is therefore only selected if it can draw sufficient support from an other-
wise as-yet-unexplained image region. This step is important to obtain robust detection
performance and significantly improves the recognition results. For details, we refer to
Leibe, Leonardis & Schiele (2008).
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Figure 11.9: (left) Example recognition and segmentation results of the ISM on challeng-
ing chair subcategories, demonstrating that given densely sampled features (pooled from three
different interest region detectors), the ISM can successfully group also complex wiry shapes.
(right) An important restriction of the star model used in the ISM is however that no higher-
level spatial relations between features are encoded. Each local feature that is consistent with
the same object center may contribute to a hypothesis. For articulated objects, this may lead to
additional body parts being associated to an object hypothesis (right Figure from Leibe et al.
(2005)).

11.4.5 DISCUSSION

The success of the simple star model representation may first seem surprising, since it
imposes no further constraints on relative part locations other than that they should
be consistent with a common object center. Clearly, this is quite a weak constraint, but
its good performance in practice can be explained by the large number of local features
that contribute to an object hypothesis. If those features overlap, they are no longer
truly independent, and consistent responses are enforced this way. This property is also
used by the ISM top-down segmentation stage, which further reinforces consistency
between overlapping local segmentations. Still, it may happen that additional, spurious
object parts are associated to a hypothesis simply because they are also consistent with
the same object center. This may particularly become a problem for articulated objects,
as shown in Figure 11.9(right). Experience however shows that such effects can usually
be removed by a further hypothesis verification stage enforcing more global constraints
(as done, e.g., in (Leibe et al. 2005)).

The recognition performance however hinges on the availability of a sufficient
number of input features to cover the target objects. For this reason, later experiments
were often based on a combination (Leibe et al. 2006) of several different interest region
detectors (Leibe et al. 2007). For example, the chair detection results shown in Fig-
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ure 11.9(left) were obtained through a combination of Harris-Laplace, Hessian-Laplace,
and DoG interest regions.

Since its inception, a number of extensions have been proposed for the basic ISM
algorithm. Those include adaptations for rotation-invariant voting (Mikolajczyk et al.
2006), multi-cue combination (Leibe et al. 2006, Seemann et al. 2005), multi-category
recognition (Mikolajczyk et al. 2006, Leibe et al. 2007), multi-viewpoint detection (See-
mann et al. 2006, Thomas et al. 2006), discriminative verification (Fritz et al. 2005,
Gall & Lempitsky 2009, Maji & Malik 2009), and articulated pose estimation (An-
driluka et al. 2008). We refer to the extensive literature for details.

11.5 DEFORMABLE PART-BASED MODELS

As a final object detection approach, we present the Deformable Part-based Model
(DPM) proposed by Felzenszwalb et al. (2008), Felzenszwalb, Girshick, McAllester &
Ramanan (2010), which has been used with great success on a large number of object
categories. It achieved top results for the PASCAL VOC Challenges 2006-2008 (Ever-
ingham et al. 2010) and has formed the core of many independent entries in the more
recent competitions since then. Thus, this model represents the current state-of-the-art
in part-based object detection.

The DPM detector consists of a global root filter (similar to the HOG descriptor)
and a set of typically 5-6 part filters, extracted at a higher resolution. The part locations
may vary relative to the root filter location according to a Pictorial Structure (Felzen-
szwalb & Huttenlocher 2005) deformation model. Both the part appearances and their
location distributions are learned automatically from training data.

11.5.1 TRAINING PROCESS

The DPM detector is trained using the latent SVM learning procedure described in
Section 10.3.3. Starting from a set of initial bounding box annotations of the cate-
gory of interest, this procedure automatically learns discriminative part models, while
iteratively refining the bounding boxes to best fit the learned model.

11.5.2 RECOGNITION PROCESS
The DPM detector builds upon the HOG representation proposed by Dalal & Triggs
(2005). In its earliest incarnation (Felzenszwalb et al. 2008), it used a slightly simpli-
fied form of HOG directly; more recent versions (Felzenszwalb, Girshick, McAllester &
Ramanan 2010) apply a PCA dimensionality reduction on the HOG input in order to
speed up computation.

Figure 11.11 shows the DPM recognition pipeline. As said before, the essential
idea of the DPM detector is to divide the recognition process into the application of a
root filter (similar to the original HOG detector) and of several part filters, extracted
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Figure 11.10: DPM recognition results for several categories of the PASCAL dataset (Ever-
ingham et al. 2010) (Images from Felzenszwalb, Girshick, McAllester & Ramanan (2010)).

at twice the resolution of the root filter. Each part is associated with a deformation
cost that is a (quadratic) function of its displacement with respect to a learned anchor
position. The recognition score is then the sum of the filter scores minus the deformation
cost. As shown by Felzenszwalb & Huttenlocher (2005), the optimal configuration can
be efficiently computed using Generalized Distance Transforms (min-convolutions).

Let Ro,(z,y) be the root filter response and R; ;(x,y) be the response of part filter
i applied at position (x,y) and scale level . Then the detection score can be computed
as

score(Zo, Yo, lo) = Rou,(To,Y0) + ZDi,lo—,\(Q(l’oayo) +v)+b, (11.4)
i—1

where b is a bias term, v; is the anchor position of part 4, and

is its distance-transformed score using the learned weights d; of the displacement func-
tion ¢q(dx,dy). After finding a high-scoring root location (xg, yo, ly), the corresponding
optimal part locations can then be computed as

Pi(z,y) = argmax{R;(z + dz,y + dy) — d; - ¢a(dw,dy)} . (11.6)
ZT,ay

In order to capture different aspects of the target object category, the DPM detec-
tor trains several distinct detector models that are combined in a mixture model. During
recognition, each component model is applied independently, and their responses are
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fused in a weighted combination. In order to further improve performance, the DPM
detector predicts a refined object bounding box from the detected part locations. For
this, it uses least-squares regression to train a category and aspect specific predictor for
each detection model. The resulting detection bounding boxes can optionally be further
reranked using context information from other detected object categories. For this, the
DPM detector trains a category specific regressor that rescores every detection based
on its original score and the highest scoring detection from each other category.

11.5.3 DISCUSSION
Figure 11.10 shows some typical recognition results obtained with the DPM detector
for several categories from the PASCAL challenge datasets. As can be seen from those
results, the part-based model manages to capture characteristic object structure and
leads to good detections despite considerable intra-category variability.

Several recent extensions have been proposed for efficient cascaded evaluation
Felzenszwalb, Girshick & McAllester (2010) or for a combination of holistic and part-
based detectors in a multi-resolution model Park et al. (2010).
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Figure 11.11: Recognition pipeline of the Deformable Part-based Model detector by Felzen-
szwalb et al. (2008), Felzenszwalb, Girshick, McAllester & Ramanan (2010) (Figure from Felzen-
szwalb, Girshick, McAllester & Ramanan (2010)).
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CHAPTER 12

Other Considerations and Current
Challenges

Our tutorial thus far has covered the fundamental and (relatively speaking) time-tested
techniques in the object recognition literature, emphasizing key representations, match-
ing, learning, and detection strategies to identify visual objects. However, it is certainly
not an exhaustive overview of all work ongoing in the research community. In this chap-
ter, we point out other accompanying threads of research on issues central to recognition
that are beyond the scope of our lecture, and, for the most part, less mature. We briefly
describe the problem area and point the interested reader to recent papers on the topic.

12.1 BENCHMARKS AND DATASETS

Over the last decade, progress in object recognition is quantifiable thanks to the avail-
ability of benchmark image datasets with ground truth labels and standard evaluation
protocols. These benchmarks provide a common ground for researchers to compare
their methods, and provoke discussion in the community about the types of imagery
and annotation on which we should focus. They are frequently used to report results in
conference papers. In addition, in recent years dedicated workshops have been held at
major vision meetings for groups to compete with their algorithms on novel withheld
test sets. The PASCAL Visual Object Classes Challenge is a prime example (Evering-
ham et al. 2008, 2010).

Recognition datasets vary primarily in terms of the types of imagery (i.e., scenes?
object-centric? generic categories? instances? Web images? images captured by the
dataset creator?), the types of annotation provided for training (i.e., image-level names,
bounding boxes, or pixel-level segmentations), and the test protocol associated with the
recognition task (i.e., naming, detection, or pixel labeling). Below we summarize several
key datasets and image resources that are currently in use by the recognition community
and are available online.

e Caltech-101 and Caltech-256: The Caltech datasets (Griffin et al. 2007) consist
of images from a wide variety of categories (see Figure 12.1(a) for several example
categories). The Caltech-256 (256 categories) is a superset of the Caltech-101 (101
categories). The images are labeled according to which category they exhibit, and
there is mostly a single prominent object, with some background clutter. The
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(a) Caltech-256 (Griffin et al. 2007)

(b) PASCAL VOC (Everingham et al. 2008)

(c) LabelMe (Russell et al. 2008)

) MSRC (MSR-Cambridge 2005)

Figure 12.1: Example images and annotations from commonly used datasets.
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images originated from keyword search on the Web, and then were pruned by
the dataset creators to remove bad examples. The test protocol is a forced-choice
multi-class classification at the image level, and the recognition rate averaged over
all 101 or 256 classes is used as the point of comparison.

e ImageNet: ImageNet (Deng et al. 2009) is an ongoing collection effort to organize
images according to the hierarchy given by nouns in WordNet. There are currently
about 11 million total images, with on average 500 images for each of about 15,000
words. Like the Caltech data, images are labeled by name, but there are not further
spatial annotations. At the time of writing, ImageNet is not accompanied by a
formal benchmark, but an initial taster challenge was given in conjunction with
PASCAL in 2010. The Caltech and ImageNet collections offer the largest multi-
class recognition challenge in terms of the number of categories. On the other
hand, they test image classification only, as opposed to localization or detection.

e PASCAL VOC: The PASCAL recognition datasets consist of bounding box
labeled images of natural indoor and outdoor scenes, with potentially multiple
objects of interest per image. The images originate from Flickr. The associated
challenge has been ongoing annually since 2005, and current versions of the dataset
have approximately 10,000 images and 20 object categories of interest (person, air-
plane, cow, sofa, motorcycle, etc; see Figure 12.1(b)). The test protocol is window-
based detection, and accuracy is judged according to precision and recall on each
category over all images.

e LabelMe: LabelMe is an open source annotation tool (Russell et al. 2008). One
can upload images and annotate them through the interface using a polygonal an-
notation tool (see Figure 12.1(c)). There are more than 11,000 images and 100,000
annotated polygons (Russell et al. 2008). Since annotators can use free form text
to label a polygon (e.g., “car”, “automobile”, “taxi”), the authors show how to
use WordNet to extend and resolve the LabelMe descriptions. There is not a single
fixed benchmark associated with LabelMe; users typically select images relevant to
the recognition task they wish to examine, and then share the selection for others
to make comparisons.

e MSRC: The Microsoft Research Cambridge dataset consists of multi-object im-
ages of outdoor scenes, labeled by object category at almost every pixel (see Fig-
ure 12.1(d)). Version 1 has 240 images and 9 object classes; version 2 has 591
images and 23 object classes. The test protocol is to predict the pixel-level labels
on novel images, and so the dataset is frequently used to evaluate recent random
field models for image parsing.
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We note that the prominence of benchmark datasets in object recognition is a
double-edged sword. The sharing of data and annotations has without a doubt helped
gauge progress and enables comparisons that would be impossible otherwise. At the
same time, the community has to take care not to resist new interesting ideas only
because they happen not to “beat” the best numbers available on a given benchmark.
Similarly, it is important to distinguish new ideas for recognition from empirical findings
that have more to do with overfitting a dataset. Finally, since the choice of annotation
style and dataset content themselves bias the task we consider, there is continuing
discussion in the field of what choices are most appropriate.

12.2 CONTEXT-BASED RECOGNITION

This tutorial has focused on providing an overview over the current state-of-the-art in
specific object identification and object category recognition. However, it is important
to consider that objects do not occur in isolation. Rather, they are part of an entire scene
and adhere to certain constraints imposed by their environment. For example, many
objects rely on a supporting surface, which restricts their possible image locations. In
addition, the typical layout of objects in the 3D world and their subsequent projection
onto a 2D image leads to a preference for certain image neighborhoods that can be
exploited by a recognition algorithm. Context therefore plays a crucial role in scene
understanding, as has been established in both psychophysical (Biederman 1981, De
Graef et al. 1990, Torralba et al. 2006) and computational (Hoiem et al. 2006, Torralba
2003) studies.

Different kinds of contextual interactions contribute to this effect. First, there is
the scene context in which we can expect to observe a certain object. For example, chairs
can primarily be seen in indoor settings, whereas cars are a telltale sign of an outdoor
environment. This global scene context has, e.g., been used by Torralba et al. (2003) in
order to improve object detection performance through contextual priming from scene
classification. An important tool for this application are holistic image representations
that capture the essential properties of the scene — such as the GIST descriptor pro-
posed by Oliva & Torralba (2001), which includes general spatial properties such as
“naturalness”, “openness”, “roughness”, etc.

Second, there is geometric context, which is a result of the image depicting a
real-world scene in which size correlates with distance and occlusion indicates depth
ordering. Moreover, many real-world objects rely on a supporting surface, generally
a ground plane, which restricts their possible locations in the image. Approaches tar-
geted at restricted automotive scenarios have used such geometric constraints for a long
time to define ground plane corridors to which object detection can be restricted (e.g.,
(Labayrade & Aubert 2003, Bombini et al. 2006, Gavrila & Munder 2007, Geronimo
et al. 2010)). For recognition in more general outdoor settings, Hoiem et al. (2006) have
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proposed an approach to simultaneously estimate the geometric scene layout and the
supporting object detections from a single image. Similar approaches employing stereo
image pairs have been proposed by (Leibe et al. 2007, Leibe, Schindler & Van Gool
2008) and Ess et al. (2007). More recently, Hedau et al. (2009) have proposed a gen-
eralization of Hoiem’s approach targeted at indoor images, and Bao et al. (2010) have
presented a generalization to multiple supporting planes.

Last but not least, there is spatial context, which expresses that certain object or
texture regions are more likely to appear next to each other than others. For example,
a pedestrian’s feet, resting on the ground, are often surrounded by a region containing
road surface texture, while his upper body and head are more likely to appear in front
of a building facade or surrounded by sky. Spatial context in the form of neighboring
region information can be modeled with pairwise relations (He et al. 2004), with features
that encode inter-pixel or inter-region spatial interactions (Shotton et al. 2006, Heitz &
Koller 2008), or by top-down constraints (Singhal et al. 2003). The benefit of high-level
semantic context based on objects’ co-occurrence information and their relative locations
has been demonstrated in a number of papers (Rabinovich et al. 2007, Galleguillos
et al. 2008, Desai et al. 2009, Felzenszwalb, Girshick, McAllester & Ramanan 2010),
and recent work shows that without such information, impoverished appearance (e.g.,
due to low resolution) can severely hurt recognition accuracy (Parikh et al. 2008).

Context therefore provides strong cues that should be exploited for recognition.
However, this exploitation is often not trivial, as many of the described properties are
mutually interdependent. For example, a patch of ground surface often contains few
usable cues that could help distinguish it from a wall surface just based on appearance
alone. Its most distinguishing feature is that objects are standing on it, but if those
have already been detected, how can we still draw benefit from contextual interactions?
This indicates that scene interpretation should not be seen as a feed-forward processing
chain, but rather as an iterative process.

12.3 MULTI-VIEWPOINT AND MULTI-ASPECT RECOGNI-
TION

Most object category detection approaches discussed so far follow the appearance-based
recognition paradigm in that they define a visual object category by a set of images
showing objects with a common appearance. This is sufficient to build powerful detec-
tors for characteristic viewpoints of many objects, such as rear views of cars or side
views of cows. However, it is not sufficient for general recognition of elongated 3D ob-
jects, for which the appearance may strongly vary with the viewpoint. In such cases,
strategies need to be developed for multi-viewpoint or multi-aspect recognition.

The simplest strategy, which is pursued by many current approaches, is to build
up a battery of single-class detectors that are independently applied to each image. Such
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an approach has, e.g., been used by Leibe et al. (2007), Leibe, Schindler & Van Gool
(2008) in order to detect multiple viewpoints of cars in street scenes. An improvement
on this battery idea is to employ a mizture model with separate components for each
object aspect, which are fused in a weighted combination, as proposed by Felzenszwalb,
Girshick, McAllester & Ramanan (2010).

In the context of the ISM detector, a different resolution strategy has been pro-
posed for multi-aspect detection of pedestrians (Seemann et al. 2006). This approach
first combines features from all different pedestrian viewpoints and articulations in a
single detector, but then splits up the contributions according to the different learned
aspects as a refinement step. A similar strategy has recently been proposed by Razavi
et al. (2010) for multi-aspect car detection with a dense Hough Forest detector (Gall &
Lempitsky 2009).

Methods for specific object recognition can directly encode 3D geometric con-
straints (Rothganger et al. 2003), which provides strong cues for object detection under
viewpoint changes. A string of approaches has tried to make use of similar constraints
for object category detection. However, this is far more challenging, since there are
generally no direct correspondences between different objects of the same category.
Thomas et al. (2006, 2009b) propose a multi-viewpoint extension of the ISM detector
that uses automatically estimated geometric constraints between different viewpoints of
the same training object in order to learn how spatial relations of learned codebook en-
tries transfer between viewpoints. Hoiem et al. (2007) explicitly encode the dense layout
of local patch appearances by mapping them onto a stylized 3D model for multi-view
car recognition.

Savarese & Fei-Fei (2007) propose a more general solution for a part-based multi-
viewpoint detector that represents general 3D objects by a configuration of planar parts
whose relative spatial arrangement is given by pairwise homographies. This approach
has the advantage that it can readily adapt to viewpoint changes, while keeping a rel-
atively simple representation. Several more recent papers extend the approach towards
an increased robustness to unknown poses (Savarese & Fei-Fei 2008) and the use of
dense feature representations (Su et al. 2009).

When combining detectors for multiple categories or viewpoints in a common sys-
tem, an important consideration is how to perform the training and classifier evaluation
steps efficiently. Torralba et al. (2004) propose a joint boosting approach for learning
classifiers that share features between multiple classes, allowing for more efficient eval-
uation. Opelt et al. (2006b) also try to share spatial relations between classifiers for
incremental learning of multiple object categories. Russovsky & Ng (2010) instead ap-
ply a segmentation approach to define regions-of-interest for efficient object detection
and share segmentation parameters between different object classes in a multi-class
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setting. It is to be expected that the importance of feature and classifier sharing will
further increase as recognition is scaled to larger numbers of categories.

12.4 ROLE OF VIDEO

As object detection progresses, it becomes amenable to more and more applications
targeted at interpretation of continuous video data. In such applications, temporal
continuity is an important cue that can be used to further stabilize the detection results
(e.g., (Everingham et al. 2006)), or to use them as the basis for tracking-by-detection
approaches (e.g., (Okuma et al. 2004, Leibe et al. 2007, Leibe, Schindler & Van Gool
2008, Ess et al. 2009, Wu & Nevatia 2007, Breitenstein et al. 2009, Choi & Savarese
2010, Andriluka et al. 2008, 2010)). While such approaches naturally perform better
with increasing detection quality, it is comforting to know that decent person and face
tracking performance can already be achieved with the approaches presented in this
tutorial.

12.5 INTEGRATED SEGMENTATION AND RECOGNITION

The idea to connect object recognition and class-specific segmentation has recently
developed into an area of active research. In the following, we shortly review some main
developments in this area, but an extensive treatment will need far more space.

When the goal is to recognize specific objects, segmentation can be seen as a
dense refinement of the recognition process. Yu & Shi (2003) and Ferrari et al. (2004)
both present simultaneous segmentation and recognition approaches for specific objects
that follow this strategy. Yu & Shi formulate the segmentation problem in a graph
theoretic framework that combines patch and pixel groupings, where the final solution
is found using the Normalized Cuts criterion (Shi & Malik 2000). Ferrari et al. start
from a small set of initial matches and then employ an iterative image exploration
process that grows the matching region by searching for additional correspondences
and segmenting the object in the process. Both methods achieve good segmentation
results in cluttered real-world settings. However, both systems need to know the exact
objects beforehand in order to extract their most discriminant features or search for
additional correspondences.

For object category recognition, the task is again more difficult, since exact corre-
spondences between category members are generally not available. In many cases, rea-
sonable bottom-up segmentations can already be obtained starting from the detection
bounding boxes. Given an object bounding box, a set of pixels can usually be identified
that clearly belong to the object (e.g. from an elliptical prior region). Those pixels can
be used to estimate the object’s color distribution; other pixels that are clearly outside
the object yield an estimate for the background distribution. Those two distributions
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can serve as input for a bottom-up segmentation procedure that tries to refine the ob-
ject’s contour, e.g. using the popular GrabCut approach (Rother et al. 2004) based
on a Conditional Random Field (CRF) formulation. Such a refinement step has been
proposed by Ferrari et al. (2008) as an initialization for body pose estimation. As such
an approach does not rely on detailed class-specific information for the segmentation
process, it is widely applicable to different object categories and articulations. However,
this also means that the segmentation process cannot take advantage of any specific
knowledge of the target category. As a result, it runs the risk of obtaining incomplete
segmentations, e.g. cutting off a person’s head or legs when the clothing colors are
sufficiently different.

An alternative approach is to estimate a class-specific top-down segmentation
based on the detection result. Borenstein & Ullman (2002) proposed an early approach
to create class-specific segmentations by fitting local image fragments with associated
figure-ground labels to the test image and combining them in jigsaw-puzzle fashion. As
their approach however only considered local consistency between overlapping patches,
the segmentation quality was quite limited.

As shown in Section 11.4.3, feature-based detectors such as the ISM or Hough
Forests can be extended to yield a top-down segmentation as a result of the recognition
process. This is achieved by back-projecting the votes contributing to a local maximum
in the Hough space to the image in order to propagate top-down information to the
patches they were originating from. This process can be used to infer local figure-
ground labels Leibe & Schiele (2003), Leibe, Leonardis & Schiele (2008), object part
annotations, or even depth maps or surface orientations from a single image Thomas
et al. (2009a).

Naturally, the advantages of top-down and bottom-up segmentation processes
should be combined. Several approaches have been proposed towards this goal. Cur-
rently, CRF formulations seem to be the most promising direction, as they allow to
easily integrate class-specific per-pixel information with region-based information and
neighborhood constraints (Tu et al. 2003, Kumar et al. 2005, Larlus et al. 2008, Ladicky
et al. 2009, 2010).

12.6 SUPERVISION CONSIDERATIONS IN OBJECT CATE-
GORY LEARNING

Given the success of statistical learning methods for building object models, an impor-
tant question is how to assure adequate human supervision. Carefully prepared image
datasets are valuable but expensive to obtain. Thus, researchers are exploring a vari-
ety of ways to loosen labeling requirements, minimize the amount of annotated data
required, and even discover visual patterns without any direct supervision. We briefly
note some emerging themes in these directions.
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12.6.1 USING WEAKLY LABELED IMAGE DATA

Weakly supervised visual learning algorithms attempt to build category models from
loosely or ambiguously labeled data. Most assume that each image contains a single
prominent object of interest, and an image-level label records what object that is.
Whereas “strong” annotations would mark the bounding box or segmentation for the
object of interest, these labels are “weak” because they lack localization information.
The general approach is to discover the common and/or discriminative portions of
the weakly labeled exemplars for a given category. Robust models are then built to
categorize and localize objects in novel images.

Perhaps most well-known are weak supervision paradigms developed for part-
based models (Weber et al. 20000, Burl et al. 1998, Fergus et al. 2003), which take
an EM approach to simultaneously estimate parts and the model parameters (see Sec-
tion 10.3.1).

A second strategy exploiting weakly labeled data is to simultaneously estimate
the figure-ground segmentation of images from the same object category (Borenstein &
Ullman 2002, Yu et al. 2002, Winn & Jojic 2005, Kumar et al. 2005, Cour & Shi 2007,
Arora et al. 2007, Todorovic & Ahuja 2006, Lee & Grauman 2010). In contrast to the
above part-based strategy that extracts sparse patches based on their appearance and
mutual positions, these approaches typically use regions produced from segmentation
algorithms and contours produced from edge detection in order to pull out a dense con-
nected area in each image. The segmentation-based methods are applicable for learning
an object model, and also for the end goal of segmenting the input exemplar images.

A third general approach is to formulate the classification problem in the multiple
instance learning (MIL) setting (Dietterich et al. 1997). Whereas the above strategies
attempt to discover the commonalities among weakly labeled exemplars, MIL meth-
ods instead treat the supervision as a form of labeling known to be noisy (Maron &
Ratan 1998, Yang & Lozano-Perez 2000, Viola et al. 2005, Zhang & Goldman 2002,
Vijayanarasimhan & Grauman 2008a, Dollar et al. 2008). In contrast to the tradi-
tional supervised learning setting in which each instance has a binary label, in MIL, the
learner is instead provided with sets (or bags) of points, and is only told that at least
one member of any positive bag is truly positive, while every member of any negative
bag is guaranteed to be negative. The goal of MIL is to induce the function that will
accurately label individual instances such as the ones within the training bags in spite
of the label ambiguity: the ratio of negative to positive instances within every positive
bag can be arbitrarily high. Multi-label variants of MIL that are suitable for this su-
pervision setting have been considered (Zhou & Zhang 2006, Zha et al. 2008, Zhang &
Zhou 2007, Vijayanarasimhan & Grauman 2009).
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12.6.2 MAXIMIZING THE USE OF MANUAL ANNOTATIONS

Aside from accommodating noisy or weak labels, another line of work aims to most
efficiently leverage minimal available labeled data. To this end, both active learning
and transfer learning have begun to be explored for object recognition.

Active learning methods survey unlabeled data to select informative examples for
which labels should be obtained from a human annotator. The classifiers are initialized
with some labeled data, and then the system repeatedly forms label queries to feed to the
annotators; given their reply, the classifiers are updated, and the cycle repeats. Active
learners pinpoint the weaknesses in the model and thereby learn more efficiently than
a traditional “passive” (random) labeling approach. Initial methods for active object
category learning treat images as data points and devise uncertainty-based criteria to
select images for labeling (Kapoor et al. 2007, Collins et al. 2008, Holub et al. 2008).
While selection functions are often easier to formulate in the binary class setting, given
the importance of multi-class category learning for object recognition, vision researchers
have also developed novel selection methods well-suited to multi-class data (Jain &
Kapoor 2009, Joshi et al. 2009). The richness of image annotations also necessitates
targeting wider types of requests to annotators, which calls for active selection criteria
that weigh the examples and the possible questions to be asked in a unified manner.
For example, the annotator may be asked to provide a bounding box around all objects
of interest, or to label a specific region, or to provide manual segmentations on some
image (Vijayanarasimhan & Grauman 2008b, 2009). Further extensions in this direction
show how to generate questions about relationships and context (Siddiquie & Gupta
2010).

A recognition system can also make do with less total training data by transferring
knowledge of some categories to more efficiently learn others (Fei-Fei et al. 2003, Bart &
Ullman 2005, Lampert et al. 2009, Quattoni et al. 2008, Stark et al. 2009). A common
theme in object recognition transfer learning work is to identify the shared visual aspects
of different object categories. One form of transfer learns object models from just a
few images by incorporating “generic” knowledge obtained from previously learned
models of unrelated categories (Fei-Fei et al. 2003, Miller et al. 2000, Stark et al. 2009).
Rather than use prior knowledge over the model parameters, another approach is to
explicitly identify local visual features that can be shared across multiple categories Bart
& Ullman (2005), or to exploit known class relationships to identify likely useful features
or prototypes (Levi et al. 2004, Quattoni et al. 2008).

12.6.3 UNSUPERVISED OBJECT DISCOVERY
Some work considers how to mine unlabeled images to discover object categories. These
methods are applicable to identify the themes and summarize the collection visually,
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or to connect the unsupervised discovery component with a labeling interface so that a
human can more efficiently annotate the data.

Several authors have studied probabilistic clustering methods originally devel-
oped for text—such as probabilistic Latent Semantic Analysis (pLSA), Latent Dirichlet
Analysis, and Hierarchical Dirichlet Processes—to discover the hidden mixture of visual
themes (“topics”) in a collection of image data (Sivic et al. 2005, Russell et al. 2006,
Fergus, Fei-Fei, Perona & Zisserman 2005, Li et al. 2007, Liu & Chen 2007). The main
idea is to use feature co-occurrence patterns in the images (“documents”) to recover
the relatively few underlying distributions that best account for the data. An image
containing instances of several categories is modeled as a mixture of topics. The models
are typically applied to bag of visual words descriptors. Having discovered the topics,
one can describe an image compactly based on the mixture of topics it contains, or
gather those images with the most clear instances of a given topic.

Other approaches treat the unsupervised visual category learning task as an image
clustering problem. The main challenges for such methods are to compute appropriate
pairwise affinities between all pairs of unlabeled images such that semantically mean-
ingful partitions can be obtained, and to isolate relevant features when dealing with
multi-object or cluttered images. Thus, several techniques show how to iterate between
computing the foreground region of interest (or set of local features) per image, and the
clusters resulting from those foreground selections (Lee & Grauman 2008, 20094,b, Kim
et al. 2008, Kim & Torralba 2009). The goal is to simultaneously partition the images
into the primary repeated objects, while also discovering the portions of each image
that can be most consistently clustered with the rest. Drawing on techniques from data
mining, other work shows how to mine for common semi-local feature configurations
in large image collections (Quack et al. 2007, Philbin & Zisserman 2008, Chum et al.
2009, Parikh et al. 2009).

12.7 LANGUAGE, TEXT, AND IMAGES

Finally, another exciting direction in visual recognition is to draw on language un-
derstanding and text processing in conjunction with visual models. Researchers are
exploring how text that naturally accompanies images—such as captioned photos, im-
ages embedded in Web pages, movies with scripts, or tagged images on photo-sharing
websites—can be used to enable novel forms of learning and data collection.

One way to exploit tagged or captioned photos is to recover the correspondence
(or “translation”) between region descriptors and the keywords that appear along-
side them (Duygulu et al. 2002), or to model the joint distribution of words and re-
gions (Barnard et al. 2003, Monay & Gatica-Perez 2003, Lavrenko et al. 2003, Li et al.
2009). Recent work further shows how exploiting predicates (e.g., isAbove(A,B)) pro-
vides even stronger cues tying the two data views together (Gupta & Davis 2008). For
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the special case of named people or faces, more direct associations can be successfully
learned (Berg et al. 2004, Everingham et al. 2006, Jie et al. 2009, Cour et al. 2010). For
example, in (Berg et al. 2004), news captions occurring alongside photographs are used
to cluster faces occurring in the pictures, and natural language tools like named entity
extraction can be used to parse the text meaningfully.

Another general strategy is to learn a new image representation (or similarly,
distance function) that is bolstered by having observed many examples together with
relevant text. To this end, variants of metric learning (Qi et al. 2009, Makadia et al.
2008), transfer learning (Quattoni et al. 2007), matrix factorization (Loeff & Farhadi
2008), random field models (Bekkerman & Jeon 2007), and projection-based meth-
ods (Hardoon & Shawe-Taylor 2003, Yakhnenko & Honavar 2009, Blaschko & Lampert
2008, Hwang & Grauman 2010) have all been explored.

Most recently, researchers are investigating how visual properties that are named
in natural language (e.g., “spotted”, “white”, “flat”) may be beneficial as mid-level
cues for object recognition. These so-called wvisual attributes offer an intermediate rep-
resentation between low-level image features and high-level categories (Farhadi et al.
2009, Lampert et al. 2009, Kumar et al. 2009, Wang et al. 2009, Wang & Mori 2010,
Rohrbach et al. 2010, Berg et al. 2010). Whereas traditional object detectors are built
via supervised learning on image features, an attribute-based detector might first pre-
dict the presence of an array of visual properties, and then use the outputs of those
models as features to an object classification layer. Attributes are attractive because
they allow a recognition system to do much more than simply predict category labels.
For example, attributes shared among different object categories can facilitate zero-shot
learning of novel classes (Lampert et al. 2009), and they also allow a system to generate
meaningful descriptions of unfamiliar objects (Farhadi et al. 2009).
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CHAPTER 13

Conclusions

In this lecture we have organized current techniques for object recognition, focusing
primarily on the ideas that appear to have traction for instance matching and learned
generic category models. Using the basic frameworks outlined above, it is now possible
to perform reliable recognition for many types of specific objects and for a number of
generic object categories. As indicated by the ongoing threads discussed in the previous
chapter, challenges in visual recognition are quite broad, and the field continues to move
forward at an exciting pace.
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