Computer Vision CS 682

Jana Kosecka kosecka@gmu.edu

Some slides thanks to S. Lazebnik, Fei-Fei Li, H. Farid, K. Grauman and others

Topics of the class

- Image formation process
- Image processing techniques for color and gray level images: edge detection, corner detection, segmentation
- Video processing, motion computation and 3D vision and geometry
- Basics of image classification, object detection and recognition
- Implement basic vision algorithms in Python/OpenCV (open source computer vision library)

Logistics

- Grading: Homeworks 50%,
- Midterm Exam 30% Final project: 20%
- **Prerequisites:** linear algebra, calculus, probability and statistics
- Lectures: Introduction by an instructor, homeworks
 every two weeks
- **Projects:** up to teams of 2 people
- Dates
 - Project proposals due March 24th
 - May week of finals final report due
 - Project presentations

Logistics

- Homeworks Due: 11:59pm submitted on Blackboard Homeworks 50%,
- Late policy: 3 days late budget, notify instructor or TA
- **Prerequisites:** linear algebra, calculus, probability and statistics
- Lectures: Introduction by an instructor, homeworks every two weeks
- Projects: up to teams of 2-3 people apply vision to a problem you care about; re-implement a paper, extend some approach.

Dates

- Project proposals due March 22th
- May week of finals final report due, project presentations instead of finals

Grade Scale

A	>96
A-	92-96
B+	88-92
В	84-88
B-	80-84
C+	76-80
С	72-76
C-	68-72
F	< 68

Computer Vision

- There are 1.8 billion images uploaded to Internet
 every day
- Every autonomous car, delivery robot, laptop and phone is equipped with cameras
- The opportunities and challenges of visual perception

Why study computer vision?

• Images and video are everywhere!

Surveillance and security

Medical and scientific images

Connections to other disciplines

The goal of computer vision

• To extract "meaning" from pixels

What a computer sees

Source: S. Narasimhan

The goal of computer vision

• To extract information from images

Humans are remarkably good at this... Source: "80 million tiny images" by Torralba et al.

What kind of information can be extracted from an image?

Geometric information

What kind of information can be extracted from an image?

Geometric information Semantic information

Reconstruction: 3D from photo collections

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz, <u>The Visual</u> <u>Turing Test for Scene Reconstruction</u>, 3DV 2013

YouTube Video https://www.youtube.com/watch?v=NdeD4cjLl0c

Neural Scene Rendering 3D scene representations

Courtesy NERF Studio API https://docs.nerf.studio/en/latest/

Representing Scenes as Neural Radiance Fields for View Synthesis <u>Ben Mildenhall* Pratul P. Srinivasan* Matthew Tancik* Jonathan T. Barron</u> <u>Ravi Ramamoorthi Ren Ng</u>

Recognition: "Simple" patterns

Check Entry				
Fore Back DataTrade Demo Not Negetable Not Scottable Not Scottable		care Leb	100 8-2006-	Rotate
NATIO THE CATA Sade Congo of Handler Syte Mar (DT Demo Bank Songer Ho 6800 MEMO 	Dollan "	Void 100	3.10 DOLLARS	
Batch No: 1001 Sequence No: 2 Rousing No: 0 111907445)	Deck Account Nox 71	Oreck No.	Oeck Ar 100	653.10
🥑 MERCHANTI	REMIT		Ente	Reject

Recognition: Faces

Computer Vision in Robot Perception

• Autonomous Driving

• Manufacturing and Service Robotics

Vision in supermarkets

LaneHawk by EvolutionRobotics

"A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk,you are assured to get paid for it... "

Deep Learning

- ~14 million images, 20k classes
- Images gathered from Internet
- Human labels via Amazon Turk

ImageNet Classification with Deep Convolutional Neural Networks

Convolutional neural networks

Beginnings: [LeCun et al. 1998]

Traditional supervised approach – Neural Networks Back-propagation, requires lots of labeled data.

Object detection, instance segmentation

K. He, G. Gkioxari, P. Dollar, and R. Girshick, <u>Mask R-CNN</u>, ICCV 2017 (Best Paper Award)

Vision: Image generation

• Faces: 1024x1024 resolution, CelebA-HQ dataset

T. Karras, T. Aila, S. Laine, and J. Lehtinen, <u>Progressive Growing of GANs for Improved Quality, Stability, and</u> <u>Variation</u>, ICLR 2018 <u>Follow-up work</u>

DeepFakes

DEPT. OF TECHNOLOGY NOVEMBER 12, 2018 ISSUE

IN THE AGE OF A.I., IS SEEING STILL BELIEVING?

Advances in digital imagery could deepen the fake-news crisis—or help us get out of it.

By Joshua Rothman

NEW YORKER

As synthetic media spreads, even real images will invite skepticism. Illustration by Javier Jaén; photograph by Svetikd / Getty

https://www.newyorker.com/magazine/2018/11/12/in-the-age-of-ai-is-seeing-stillbelieving

Other exciting developments

• Vision and language models: <u>DALL-E</u>, <u>CLIP</u>

Other exciting developments

 \rightarrow

Vision and language models: <u>DALL-E</u>, <u>CLIP</u>

An astronaut Teddy bears A bowl of soup

riding a horse lounging in a tropical resort in space playing basketball with cats in space

in a photorealistic style in the style of Andy Warhol as a pencil drawing

Course overview

- I. Early vision: Image formation and processing
- II. Mid-level vision: Grouping and fitting
- III. Multi-view geometry
- IV. Recognition
- V. Additional topics

Advanced topics: Deep Learning CS 747

I. Early vision

Basic image formation and processing

Linear filtering Edge detection

Cameras and sensors Light and color

Feature extraction

Optical flow

II. "Mid-level vision"

Fitting: Least squares Voting methods

Alignment

III. Multi-view geometry

Epipolar geometry

Two-view stereo

Драконь, видимый подъ различными углами зрілія По граворь на міли нат "Oculus artificialis teledioptricus" Цана. 1702 года.

Structure from motion

Multi-view stereo

IV. Recognition

Basic classification

Deep learning

Object detection

Segmentation

V. Additional Topics (time permitting)

Generation

3D scene understanding

Video

A couple in their wedding attire stand behind a table with a wedding cake and flowers.

Images and text