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Topics of the class

• Image formation process
• Image processing techniques for color and gray level 

images: edge detection, corner detection, 
segmentation

• Video processing, motion computation and 3D vision 
and geometry

• Basics of image classification, object detection and 
recognition 

• Implement basic vision algorithms in Python/OpenCV 
(open source computer vision library)



Logistics
• Grading: Homeworks 50%,
• Midterm Exam 30% Final project: 20% 
• Prerequisites: linear algebra, calculus, probability 

and statistics
• Lectures: Introduction by an instructor, homeworks

every two weeks
• Projects: up to teams of 2 people
• Dates

– Project proposals due March 24th
– May week of finals final report due
– Project presentations



Logistics
• Homeworks Due: 11:59pm submitted on Blackboard 

Homeworks 50%,
• Late policy: 3 days late budget, notify instructor or TA  
• Prerequisites: linear algebra, calculus, probability and statistics
• Lectures: Introduction by an instructor, homeworks every two 

weeks
• Projects: up to teams of 2-3 people

apply vision to a problem you care about; re-implement a paper,
extend some approach. 

• Dates
– Project proposals due March 22th
– May week of finals final report due, project presentations 

instead of finals



Grade Scale

A >96
A- 92-96
B+ 88-92
B 84-88
B- 80-84
C+ 76-80
C 72-76
C- 68-72
F < 68



Computer Vision

• There are 1.8 billion images uploaded to Internet 
every day

• Every autonomous car, delivery robot, laptop and 
phone is equipped with cameras

• The opportunities and challenges of visual perception



Why study computer vision?

Personal photo albums

Surveillance and security

Movies, news, 
sports

Medical and scientific images

• Images and video are everywhere!



COMP 776: Computer Vision



Connections to other disciplines

Computer Vision

Image Processing

Machine Learning

Artificial Intelligence

Robotics

Cognitive science
Neuroscience

Computer Graphics



The goal of computer vision
• To extract “meaning” from pixels

What we see What a computer sees
Source: S. Narasimhan



The goal of computer vision
• To extract information from images

Source: “80 million tiny images” by Torralba et al.
Humans are remarkably good at this…



What kind of information can be extracted from an 
image?

Geometric information

…



What kind of information can be extracted from an 
image?

Geometric information
Semantic information

building

person
trashcan car car

ground

tree tree

sky

door
window

building

roof

chimney

Outdoor scene
City European

…



Reconstruction: 3D from photo collections

YouTube Video https: //www.youtube.com/watch?v=NdeD4cjLI0c

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz, The Visual 
Turing Test for Scene Reconstruction, 3DV 2013

https://www.youtube.com/watch?v=NdeD4cjLI0c
http://www.cse.wustl.edu/~furukawa/papers/3dv-2013.pdf


Neural Scene Rendering 
3D scene representations 

Courtesy NERF Studio API https://docs.nerf.studio/en/latest/

Representing Scenes as Neural Radiance Fields for View Synthesis
Ben Mildenhall* Pratul P. Srinivasan* Matthew Tancik* Jonathan T. Barron

Ravi Ramamoorthi Ren Ng

https://bmild.github.io/
https://pratulsrinivasan.github.io/
https://www.matthewtancik.com/
https://jonbarron.info/
http://cseweb.ucsd.edu/~ravir/
https://www2.eecs.berkeley.edu/Faculty/Homepages/yirenng.html


Recognition: “Simple” patterns



Recognition: Faces



Wall

Chair

Towel

Cabinet

Fridge

Structure
Box

Microwave
Prop

IGQ REG GQ-Adv-Phys GQ-Adv GQ-S GQ

Success Rate (%) 60±13 52±14 68±13 74±12 72±12 80±11

Precision (%) N/A N/A 68 87 92 100

Robust Grasp Rate (%) N/A N/A 100 30 48 58

Planning Time (sec) 1.8 3.4 0.7 0.7 0.8 0.8

TABLE IV: Performance of grasp planning methods on our grasping bench-
mark with the test dataset of 10 household objects with 95% confidence
intervals for the success rate. Each method was tested for 50 trials, and
details on the methods used for comparison can be found in Section VI-C.
GQ performs best in terms of success rate and precision, with 100% precision
(zero false positives among 29 positive classifications). Performance decreases
with smaller training datasets, but the GQ-CNN methods outperform the
image-based grasp quality metrics (IGQ) and point cloud registration (REG).

Generalization Objects Order Fulfillment

Fig. 7: (Left) The test set of 40 household objects used for evaluating the
generalization performance of the Dex-Net 2.0 grasp planner. The dataset
contains rigid, articulated, and deformable objects. (Right) The experimental
setup for order fulfillment with the ABB YuMi. The goal is to grasp and
transport three target objects to a shipping container (box on right).

(CEM) [33], which iteratively samples a set of candidate
grasps and re-fits the candidate grasp distribution to the grasps
with the highest predicted robustness, in order to find better
maxima of the robust grasping policy. More details can be
found in the supplemental file. The CEM-augmented Dex-Net
2.0 grasp planner achieved 94% success and 99% precision
(68 successes out of 69 grasps classified as robust), and it
took an average of 2.5s to plan grasps.

H. Application: Order Fulfillment
To demonstrate the modularity of the Dex-Net 2.0 grasp

planner, we used it in an order fulfillment application with
the ABB YuMi. The goal was to grasp and transport a set
of three target objects to a shipping box in the presence of
three distractor objects when starting with the objects in a pile
on a planar worksurface, illustrated in Fig. 7. Since the Dex-
Net 2.0 grasp planner assumes singulated objects, the YuMi
first separated the objects using a policy learned from human
demonstrations mapping binary images to push locations [31].
When the robot detected an object with sufficient clearance
from the pile, it identified the object based on color and used
GQ-L-Adv to plan a robust grasp. The robot then transported
the object to either the shipping box or a reject box, depending
on whether or not the object was a distractor. The system
successfully placed the correct objects in the box on 4 out of
5 attempts and was successful in grasping on 93% of 27 total
attempts.

I. Failure Modes
Fig. 8 displays some common failures of the GQ-CNN

grasp planner. One failure mode occured when the RGB-D

RGB-D Sensor Noise Misclassified Collisions

+ + +

Execution

Planned
Grasp

Fig. 8: Four examples of failed grasps planned using the GQ-CNN from Dex-
Net 2.0. The most common failure modes were related to: (left) missing sensor
data for an important part of the object geometry, such as thin parts of the
object surface, and (right) collisions with the object that are misclassified as
robust.

sensor failed to measure thin parts of the object geometry,
making these regions seem accessible. A second type of failure
occured due to collisions with the object. It appears that the
network was not able to fully distinguish collision-free grasps
in narrow parts of the object geometry. This suggests that
performance could be improved with more accurate depth
sensing and using analytic methods to prune grasps in collsion.

VII. DISCUSSION AND FUTURE WORK

We developed a Grasp Quality Convolutional Neural Net-
work (GQ-CNN) architecture that predicts grasp robustness
from a point cloud and trained it on Dex-Net 2.0, a dataset
containing 6.7 million point clouds, parallel-jaw grasps, and
robust grasp metrics. In over 1,000 physical evaluations, we
found that the Dex-Net 2.0 grasp planner is as reliable and
3⇥ faster a method based on point cloud registration, and had
99% precision on a test set of 40 novel objects.

In future work, our goal is to approach 100% success on
known objects by using active learning to adaptively acquire
grasps using a policy initialized with a GQ-CNN. Additionally,
we plan to exend the method to grasp objects in clutter [16, 33]
by using simulated piles of rigid objects from Dex-Net and
by augmenting the grasping policy with an option to push and
separate objects when no robust grasp is available. We also
intend to extend the method to use point clouds from multiple
viewpoints and in grasping tasks with sequential structure,
such as regrasping for assembly. Furthermore, we plan to
release a subset of our code, dataset, and the trained GQ-CNN
weights to facilitate further research and comparisons.
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Computer Vision in Robot Perception

• Autonomous Driving 

• Manufacturing and Service Robotics 



Vision in supermarkets

LaneHawk by EvolutionRobotics
“A smart camera is flush-mounted in the checkout lane, continuously watching for 
items. When an item is detected and recognized, the cashier verifies the quantity 
of items that were found under the basket, and continues to close the transaction. 
The item can remain under the basket, and with LaneHawk,you are assured to 
get paid for it… “ Source: S. Seitz

http://www.evolution.com/products/lanehawk/


Deep Learning 

[NIPS 2012]

• ~14 million images, 20k classes 
• Images gathered from Internet
• Human labels via Amazon Turk 



Convolutional neural networks
Beginnings: [LeCun et al. 1998]

Traditional supervised approach – Neural Networks Back-propagation, requires 
lots of labeled data.  



Object detection, instance segmentation

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Vision: Image generation

• Faces: 1024x1024 resolution, CelebA-HQ dataset

T. Karras, T. Aila, S. Laine, and J. Lehtinen, Progressive Growing of GANs for Improved Quality, Stability, and 
Variation, ICLR 2018 Follow-up work

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf
https://arxiv.org/pdf/1812.04948.pdf


DeepFakes

https://www.newyorker.com/magazine/2018/11/12/in-the-age-of-ai-is-seeing-still-
believing

https://www.newyorker.com/magazine/2018/11/12/in-the-age-of-ai-is-seeing-still-believing


Other exciting developments 

• Vision and language models: DALL-E, CLIP

https://openai.com/blog/dall-e/
https://openai.com/blog/clip/


• Vision and language models: DALL-E, CLIP

Other exciting developments 

https://openai.com/blog/dall-e/
https://openai.com/blog/clip/


Course overview

I. Early vision: Image formation and processing
II. Mid-level vision: Grouping and fitting
III. Multi-view geometry
IV. Recognition
V. Additional topics

Advanced topics:  Deep Learning CS 747



I. Early vision
• Basic image formation and processing

Cameras and sensors
Light and color

Linear filtering
Edge detection

* =

Feature extraction Optical flow



II. “Mid-level vision”

• Fitting and grouping

Fitting: Least squares
Voting methods

Alignment



III. Multi-view geometry

Structure from motion

Two-view stereoEpipolar geometry

Multi-view stereo



IV. Recognition

Basic classification

Object detection

Deep learning

Segmentation



V. Additional Topics (time permitting)

Video

3D scene understanding Images and text

Generation


