Reinforcement Learning
Ch. 21
Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial | A Learning Trial | After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

Initial

[Video: AIBO WALK – initial]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training

[Video: AIBO WALK – training]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Image: AIBO WALK finished]

[Kohl and Stone, ICRA 2004]

Example: Sidewinding

[Image: SNAKE climbStep+sidewinding]

[Andrew Ng]

[Video: SNAKE - climbStep+sidewinding]
Example: Toddler Robot

[Video: TODDLER – 40s]

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
- Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try out actions and states to learn

Offline (MDPs) vs. Online (RL)

- Offline Solution
- Online Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

Input Policy π

Observed Episodes (Training)

<table>
<thead>
<tr>
<th>Episode 1</th>
<th>Episode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, east, C, -1</td>
<td>B, east, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>C, east, D, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>D, exit, x, +10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Episode 3</th>
<th>Episode 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, north, C, -1</td>
<td>E, north, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>C, east, A, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>A, exit, x, -10</td>
</tr>
</tbody>
</table>

Learned Model

$T(s,a,s')$

- $T(B,\text{east},C) = 1.00$
- $T(C,\text{east},D) = 0.75$
- $T(C,\text{east},A) = 0.25$

$R(s,a,s')$

- $R(B,\text{east},C) = -1$
- $R(C,\text{east},D) = -1$
- $R(D,\text{exit},x) = +10$

Example: Expected Age

Goal: Compute expected age of cs188 students

Known $P(A)$

$E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots$

Without $P(A)$, instead collect samples $[a_1, a_2, \ldots, a_N]$

Unknown $P(A)$: “Model Based”

$\hat{P}(a) = \frac{\text{num}(a)}{N}$

$E[A] \approx \sum_a \hat{P}(a) \cdot a$

Unknown $P(A)$: “Model Free”

$E[A] \approx \frac{1}{N} \sum_i a_i$

Why does this work? Because eventually you learn the right model.

Why does this work? Because samples appear with the right frequencies.
Model-Free Learning

Passive Reinforcement Learning
Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy \(\pi(s) \)
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - Goal: learn the state values

- In this case:
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

- Goal: Compute values for each state under \(\pi \)

- Idea: Average together observed sample values
 - Act according to \(\pi \)
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Input Policy \(\pi \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume: \(\gamma = 1 \)

Observed Episodes (Training)

<table>
<thead>
<tr>
<th>Episode 1</th>
<th>Episode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, east, C, -1</td>
<td>B, east, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>C, east, D, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>D, exit, x, +10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Episode 3</th>
<th>Episode 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, north, C, -1</td>
<td>E, north, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>C, east, A, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>A, exit, x, -10</td>
</tr>
</tbody>
</table>

Output Values

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>+8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>+10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of \(T, R \)
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^\pi(s) = 0$$

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)$$

$$\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)$$

$$\ldots$$

$$\text{sample}_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)$$

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i \text{sample}_i$$
Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s’ will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s): \[sample = R(s, \pi(s), s') + \gamma V^\pi(s') \]
Update to V(s): \[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample \]
Same update: \[V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s)) \]
Exponential Moving Average

- Exponential moving average
 - The running interpolation update:
 \[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important:
 \[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]
 - Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume: \(\gamma = 1, \alpha = 1/2 \)

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]
Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

 \[\pi(s) = \arg \max_a Q(s, a) \]
 \[Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right] \]

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Active Reinforcement Learning
Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning

- Q-Learning: sample-based Q-value iteration
 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn \(Q(s,a)\) values as you go
 - Receive a sample \((s,a,s',r)\)
 - Consider your old estimate: \(Q(s,a)\)
 - Consider your new sample estimate:
 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \text{[sample]} \]

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
Reinforcement Learning

- We still assume an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
- Still looking for a policy \(\pi(s) \)
- New twist: don’t know \(T \) or \(R \), so must try out actions
- Big idea: Compute all averages over \(T \) using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>
Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes
 \[(s, a, r, s', a', r', s'', a'', r'', s''', \ldots) \]
 - Update estimates each transition \((s, a, r, s') \)
 - Over time, updates will mimic Bellman updates

Q-Learning

- We’d like to do Q-value updates to each Q-state:
 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_a Q_k(s', a') \right] \]
 - But can’t compute this update without knowing \(T, R \)

- Instead, compute average as we go
 - Receive a sample transition \((s, a, r, s') \)
 - This sample suggests
 \[Q(s, a) \approx r + \gamma \max_a Q(s', a') \]
 - But we want to average over results from \((s, a) \) (Why?)
 - So keep a running average
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_a Q(s', a') \right] \]
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called **off-policy learning**

- **Caveats:**
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]

Exploration vs. Exploitation
How to Explore?

- **Several schemes for forcing exploration**
 - Simplest: random actions (\(\epsilon\)-greedy)
 - Every time step, flip a coin
 - With (small) probability \(\epsilon\), act randomly
 - With (large) probability \(1-\epsilon\), act on current policy

- **Problems with random actions?**
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower \(\epsilon\) over time
 - Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – \(\epsilon\)-greedy – crawler (L11D3)]

Exploration Functions

- **When to explore?**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- **Exploration function**
 - Takes a value estimate \(u\) and a visit count \(n\), and returns an optimistic utility, e.g. \(f(u, n) = u + \frac{k}{n}\)
 - Regular Q-Update: \(Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q(s', a')\)
 - Modified Q-Update: \(Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))\)
 - Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]
Regret

- Even if you learn the optimal policy, you still make mistakes along the way.
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards.
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal.
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret.

Approximate Q-Learning
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we’ll see it over and over again

Example: Pacman

Let’s say we discover through experience that this state is bad:

In naive q-learning, we know nothing about this state:

Or even this one!
Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

 $V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$
 $Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)$

 - Advantage: our experience is summed up in a few powerful numbers
 - Disadvantage: states may share features but actually be very different in value!
Approximate Q-Learning

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Q-learning with linear Q-functions:**

 \[
 \text{transition} = (s, a, r, s') \\
 \text{difference} = \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\
 Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]} \\
 w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a)
 \]

- **Intuitive interpretation:**
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

- **Formal justification:** online least squares

Example: Q-Pacman

\[Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a) \]

\[
Q(s, \text{NORTH}) = 1.0 \\
Q(s', \cdot) = 0
\]

\[
\text{difference} = -501 \\
\]

\[
w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5 \\
w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0
\]

\[Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a) \]

[Demo: approximate Q-learning pacman (L11D10)]
Q-Learning and Least Squares

Linear Approximation: Regression*

Prediction: \(\hat{y} = w_0 + w_1 f_1(x) \)

Prediction: \(\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \)
Optimization: Least Squares*

Total error = \(\sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2 \)

Minimizing Error*

Imagine we had only one point \(x \), with features \(f(x) \), target value \(y \), and weights \(w \):

\[
\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2
\]

\[
\frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]

\[
w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)
\]

Approximate q update explained:

\[
w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)
\]

“target” “prediction”
Overfitting: Why Limiting Capacity Can Help*

Policy Search
Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn policies that maximize rewards, not the values that predict them

- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Better methods exploit lookahead structure, sample wisely, change multiple parameters...
RL: Helicopter Flight

RL: Learning Locomotion

[Video: HELICOPTER]

[Video: GAE]
RL: Learning Soccer

[Bansal et al, 2017]

RL: In Hand Manipulation

Pieter Abbeel — UC Berkeley | Gradescope | Covariant AI
Conclusion

- We’re done with Part I: Search and Planning!
- We’ve seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!