Linear classifiers

- Find linear function (hyperplane) to separate positive and negative examples – many such hyperplanes

\[x_i \text{ positive: } x_i \cdot w + b \geq 0 \]
\[x_i \text{ negative: } x_i \cdot w + b < 0 \]

Which hyperplane is best?
Support vector machines

- Find hyperplane that maximizes the margin between the positive and negative examples

\[\begin{align*}
 &\text{x}_i \text{ positive } (y_i = 1) : \quad \text{x}_i \cdot \mathbf{w} + b \geq 1 \\
 &\text{x}_i \text{ negative } (y_i = -1) : \quad \text{x}_i \cdot \mathbf{w} + b \leq -1 \\
\end{align*} \]

For support vectors, \(\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1 \)

Distance between point and hyperplane:

\[\frac{|\mathbf{x}_i \cdot \mathbf{w} + b|}{||\mathbf{w}||} \]

Therefore, the margin is \(\frac{2}{||\mathbf{w}||} \)

Finding the maximum margin hyperplane

1. Maximize margin \(\frac{2}{||\mathbf{w}||} \)
2. Correctly classify all training data:

\[\begin{align*}
 &\text{x}_i \text{ positive } (y_i = 1) : \quad \text{x}_i \cdot \mathbf{w} + b \geq 1 \\
 &\text{x}_i \text{ negative } (y_i = -1) : \quad \text{x}_i \cdot \mathbf{w} + b \leq -1 \\
\end{align*} \]

- Quadratic optimization problem:

Minimize \(\frac{1}{2} \mathbf{w}^T \mathbf{w} \)

Subject to \(y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 \)
Solving the Optimization Problem

minimize \(\frac{1}{2} \|w\|^2 \)

s.t. \(y_i (w^T x_i + b) \geq 1 \)

Lagrangian Function

minimize \(L_p(w, b, \alpha_i) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i (y_i (w^T x_i + b) - 1) \)

s.t. \(\alpha_i \geq 0 \)

Solving the Optimization Problem

minimize \(L_p(w, b, \alpha_i) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i (y_i (w^T x_i + b) - 1) \)

s.t. \(\alpha_i \geq 0 \)

Lagrangian Dual Problem

maximize \(\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j \)

s.t. \(\alpha_i \geq 0 \), and \(\sum_{i=1}^{n} \alpha_i y_i = 0 \)
Solving the Optimization Problem

- From KKT condition, we know:
 \[\alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right) = 0 \]
- Thus, only support vectors have \(\alpha_i \neq 0 \)
- The solution has the form:
 \[\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i \]
 get \(b \) from \(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 = 0 \),
 where \(\mathbf{x}_i \) is support vector

Finding the maximum margin hyperplane

- Solution:
 \[\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \]

Finding the maximum margin hyperplane

- Solution: \(w = \sum_i \alpha_i y_i x_i \)
 \[b = y_i - w \cdot x_i \] for any support vector

- Classification function (decision boundary):
 \[w \cdot x + b = \sum_i \alpha_i y_i x_i \cdot x + b \]

- Notice that it relies on an inner product between the test point \(x \) and the support vectors \(x_i \)
- Solving the optimization problem also involves computing the inner products \(x_i \cdot x_j \) between all pairs of training points

Nonlinear SVMs

- Datasets that are linearly separable work out great:

- But what if the dataset is just too hard?

- We can map it to a higher-dimensional space:

Slide credit: Andrew Moore
Nonlinear SVMs

- General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: \ x \rightarrow \varphi(x) \]

Recall Solving the Optimization Problem

- The linear discriminant function is:

\[g(x) = w^T x + b = \sum_{i \in SV} \alpha_i x_i^T x + b \]

- Notice it relies on a dot product between the test point \(x \) and the support vectors \(x_i \).
Nonlinear SVM: Optimization

- Formulation: (Lagrangian Dual Problem)

\[
\max \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(x_i, x_j)
\]

such that

\[
0 \leq \alpha_i \leq C \\
\sum_{i=1}^{n} \alpha_i y_i = 0
\]

- The solution of the discriminant function is

\[
g(x) = \sum_{i \in SV} \alpha_i K(x_i, x) + b
\]

- The optimization technique is the same.

Nonlinear SVMs – Kernel Trick

- With this mapping, our discriminant function is now:

\[
g(x) = w^T \phi(x) + b = \sum_{i \in SV} \alpha_i \phi(x_i)^T \phi(x) + b
\]

- No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.

- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

\[
K(x_i, x_j) = \phi(x_i)^T \phi(x_j)
\]
Nonlinear SVMs – Kernel Trick

- Examples of commonly-used kernel functions:
 - Linear kernel: \(K(x_i, x_j) = x_i^T x_j \)
 - Polynomial kernel: \(K(x_i, x_j) = (1 + x_i^T x_j)\)\(^p\)
 - Gaussian (Radial-Basis Function (RBF)) kernel:
 \[
 K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)
 \]
 - Sigmoid:
 \[
 K(x_i, x_j) = \tanh(\beta_0 x_i^T x_j + \beta_1)
 \]

Kernels for bags of features

- Histogram intersection kernel:
 \[
 I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i))
 \]

- Generalized Gaussian kernel:
 \[
 K(h_1, h_2) = \exp\left(-\frac{1}{A} D(h_1, h_2)^2\right)
 \]

- \(D \) can be Euclidean distance, \(\chi^2 \) distance, Earth Mover’s Distance, etc.

Support Vector Machine: Algorithm

• 1. Choose a kernel function
• 2. Choose a value for C – bound on maximum weight for each support vector
• 3. Solve the quadratic programming problem (many software packages available)
• 4. Construct the discriminant function from the support vectors

Some Issues

• Choice of kernel
 - Gaussian or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
• Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt
Summary: Support Vector Machine

1. Large Margin Classifier
 - Better generalization ability & less over-fitting

2. The Kernel Trick
 - Map data points to higher dimensional space in order to make them linearly separable.
 - Since only dot product is used, we do not need to represent the mapping explicitly.

Summary: SVMs for image classification

1. Pick an image representation (in our case, bag of features)
2. Pick a kernel function for that representation
3. Compute the matrix of kernel values between every pair of training examples
4. Feed the kernel matrix into your favorite SVM solver to obtain support vectors and weights
5. At test time: compute kernel values for your test example and each support vector, and combine them with the learned weights to get the value of the decision function
What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-class SVM formulation
• In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs
• One vs. others
 – Training: learn an SVM for each class vs. the others
 – Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
• One vs. one
 – Training: learn an SVM for each pair of classes
 – Testing: each learned SVM “votes” for a class to assign to the test example

SVMs: Pros and cons

• Pros
 – Many publicly available SVM packages: http://www.kernel-machines.org/software
 – Kernel-based framework is very powerful, flexible
 – SVMs work very well in practice, even with very small training sample sizes

• Cons
 – No “direct” multi-class SVM, must combine two-class SVMs
 – Computation, memory
 • During training time, must compute matrix of kernel values for every pair of examples
 • Learning can take a very long time for large-scale problems
Multi-class classification

• How to deal with multiple classes
• One vs. all strategy
• For N classes train N different classifiers
• For class 1 positive examples – others negative examples
• How to combine the classifiers?
• Each will output some confidence score $h(x)$
• Final prediction will be the class with highest confidence score

Bias and Variance

• Modeling issues: overfitting, underfitting
• How do you know how good is your model
• Example: regression (linear, vs 3rd order polynomial)
• Intuition: models which underfit have large bias
• Models which overfit have large variance
• Idea: fit the model to different subsets of data, if we fit the line that line will have roughly similar parameters, but large test error – small variance, large bias
• If we fit overfit, each model will have small error but the parameters of the model will have large variance
Bias and Variance

- Modeling issues: overfitting, underfitting in classification
- How do you know how good is your model
- 0/1 classification error: proportion of misclassified examples
- Training error and test error
- Picture of variance bias trade-off: curvature of decision boundary
- How do you choose good model in practice?
- Hold-out-cross-validation
 - Split data into 70% train and 30% cross-validation
 - Generate N different models, pick the one with lowest error on cross-validation set

Cross-validation: Example

4-fold cross-validation

It allows to use $\frac{3}{4}$ of the available data for training, while making use of all of the data to assess performance
k-fold Cross-validation

- In general: we perform k runs. Each run uses \((k-1)/k\) of the available data for training.

- If the number of data is very limited, we can set \(k=N\) (total number of data points). This gives the leave-one-out cross-validation technique.

k-fold Cross-validation: Drawbacks

- **Computationally expensive**: number of training runs is increased by a factor of \(k\).

- A single models may have multiple complexity parameters: exploring combinations of settings could require a number of training runs that is exponential in the number of parameters.
In practice

- What are the choices if the first choice does not work?
- i.e. large generalization error
- If the model has high bias – it is too simple: consider adding more features or using deeper decision tree
- If the model has high variance – it is too complex: fits the idiosyncracy of the data: remove features, or get more data

Ensemble Methods

- So far we considered only single hypothesis
- Methods which consider whole ensemble of hypotheses, from some hypothesis space and combine their prediction
- One idea – consider majority vote N=5 hypotheses, if at least 3 classify it correctly then it is correct label (majority vote)
- Example: multiple separating lines for non-linearly separable classes, note individual hypotheses are simple
- Most popular idea: Boosting
Boosting

• Defines a classifier using an additive model:

\[F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + \ldots \]

• We need to define a family of weak classifiers

\[f_k(x) \text{ from a family of weak classifiers} \]

Boosting

• Each training example has associated \(w_i \)
• At the beginning all \(w_i = 1 \)
• Generate first hypothesis \(h_1 \), some example correct, some no
• Idea: next do better of misclassified examples
• Increase weights of misclassified examples, decrease weight of correctly classified examples, etc …
• Final ensemble is weighted majority combination of all examples
Boosting

- It is a sequential procedure:

Each data point has a class label:

\[y_t = \begin{cases} +1 & (\text{○}) \\ -1 & (\text{●}) \end{cases} \]

and a weight:

\[w_t = 1 \]

Toy example

Weak learners from the family of lines

Each data point has a class label:

\[y_t = \begin{cases} +1 & (\text{○}) \\ -1 & (\text{●}) \end{cases} \]

and a weight:

\[w_t = 1 \]

\[h \Rightarrow p(\text{error}) = 0.5 \text{ it is at chance} \]
This one seems to be the best

Each data point has
a class label:
\[y_t = \begin{cases} +1 & (\text{red}) \\ -1 & (\text{blue}) \end{cases} \]
and a weight:
\[w_t = 1 \]

This is a ‘weak classifier’; it performs slightly better than chance.

We set a new problem for which the previous weak classifier performs at chance again

Each data point has
a class label:
\[y_t = \begin{cases} +1 & (\text{red}) \\ -1 & (\text{blue}) \end{cases} \]

We update the weights:
\[w_t \leftarrow w_t \exp(-y_t H_t) \]
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases}
 +1 & (\text{red}) \\
 -1 & (\text{blue})
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp(-y_t H_t) \]

Slide credit: Antonio Torralba
Toy example

We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases} +1 & \text{if } y_t = 1 \\ -1 & \text{if } y_t = -1 \end{cases} \]

We update the weights:

\[w_t := w_t \exp(-y_t H_t) \]

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.
Adaboost

Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_1(i) = 1/m\).
For \(t = 1, \ldots, T\):

- Train weak learner using distribution \(D_t\).
- Get weak hypothesis \(h_t : X \rightarrow \{-1, +1\}\) with error
 \[\epsilon_t = \Pr_{x \sim D_t} [h_t(x) \neq y]\].
- Choose \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\).
- Update:
 \[
 D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
 e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\
 e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i
 \end{cases}
 = \frac{D_t(i) \exp(-\alpha_t h_t(x_i))}{Z_t}
 \]
 where \(Z_t\) is a normalization factor (chosen so that \(D_{t+1}\) will be a distribution).

Output the final hypothesis:
\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).\]

Slide credit: Antonio Torralba

Boosting

- **Advantages of boosting**
 - Integrates classification with feature selection
 - Complexity of training is linear instead of quadratic in the number of training examples
 - Flexibility in the choice of weak learners, boosting scheme
 - Testing is fast
 - Easy to implement

- **Disadvantages**
 - Needs many training examples
 - Often doesn’t work as well as SVM (especially for many-class problems)
AdaBoost learning algorithm

Discrete AdaBoost (Freund & Schapire 1996b)
1. Start with weights $w_i = 1/N$, $i = 1, \ldots, N$.
2. Repeat for $m = 1, 2, \ldots, M$:
 (a) Fit the classifier $f_m(x) \in \{-1, 1\}$ using weights w_i on the training data.
 (b) Compute $err_m = E_w[y \neq f_m(x)]$, $\epsilon_m = \log((1 - err_m)/err_m)$.
 (c) Set $w_i \leftarrow w_i \exp[\epsilon_m \cdot 1_{y \neq f_m(x_i)}]$, $i = 1, 2, \ldots, N$, and renormalize so that $\sum_i w_i = 1$.
3. Output the classiﬁer sign$[\sum_{m=1}^M \epsilon_m f_m(x)]$

Face detection
Face detection

• Basic idea: slide a window across image and evaluate a face model at every location

Challenges of face detection

• Sliding window detector must evaluate tens of thousands of location/scale combinations
• Faces are rare: 0–10 per image
 – For computational efficiency, we should try to spend as little time as possible on the non-face windows
 – A megapixel image has ~10^6 pixels and a comparable number of candidate face locations
 – To avoid having a false positive in every image image, our false positive rate has to be less than 10^-6
The Viola/Jones Face Detector

• A seminal approach to real-time object detection
• Training is slow, but detection is very fast
• Key ideas
 – Integral images for fast feature evaluation
 – Boosting for feature selection
 – Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

A totally different idea

• Use many very simple features
• Learn cascade of tests for target object
• Efficient if:
 – features easy to compute
 – cascade short
Using Many Simple Features

• Viola Jones / Haar Features

(Generalized) Haar Features:
• rectangular blocks, white or black
• 3 types of features:
 • two rectangles: horizontal/vertical
 • three rectangles
 • four rectangles
• in 24x24 window: 180,000 possible features

Example

Source

Result

\times

\checkmark
Feature selection

• For a 24x24 detection region, the number of possible rectangle features is ~160,000!

• At test time, it is impractical to evaluate the entire feature set

• Can we create a good classifier using just a small subset of all possible features?

• How to select such a subset?
Boosting

- Boosting is a classification scheme that works by combining *weak learners* into a more accurate ensemble classifier
 - A weak learner need only do better than chance
- Training consists of multiple *boosting rounds*
 - During each boosting round, we select a weak learner that does well on examples that were hard for the previous weak learners
 - “Hardness” is captured by weights attached to training examples

Problem

- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- At test time, it is impractical to evaluate the entire feature set
- Can we create a good classifier using just a small subset of all possible features?
- How to select such a subset?
- Feature here is equivalent with weak hypothesis

- Answer: Boosting [AdaBoost, Freund/Shapire]
 - Finds small set of features that are “sufficient”
 - Generalizes very well
 - Requires positive and negative examples
AdaBoost Idea (in Viola/Jones):

- Given set of “weak” classifiers:
 - Pick best one
 - Reweight training examples, so that misclassified images have larger weight
 - Reiterate; then linearly combine resulting classifiers

\[
h_i(x) = \begin{cases}
1 & \text{if } p_i f_i(x) > p_i \theta_i \\
0 & \text{otherwise}
\end{cases}
\]

Boosting for face detection

- Define weak learners based on rectangle features

\[
h_i(x) = \begin{cases}
1 & \text{if } p_i f_i(x) > p_i \theta_i \\
0 & \text{otherwise}
\end{cases}
\]
Boosting for face detection

• Define weak learners based on rectangle features
• For each round of boosting:
 – Evaluate each rectangle filter on each example
 – Select best threshold for each filter
 – Select best filter/threshold combination
 – Reweight examples
• Computational complexity of learning: \(O(MNK) \)
 – \(M \) rounds, \(N \) examples, \(K \) features
Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost.

95% correct detection on test set with 1 in 14084 false positives.

Classifier are Efficient

- Given a nested set of classifier hypothesis classes.
Cascaded Classifier

- A 1 feature classifier achieves 100% detection rate and about 50% false positive rate.
- A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative) – using data from previous stage.
- A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

Output of Face Detector on Test Images

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce
Summary: Discriminative methods

- Nearest-neighbor and k-nearest-neighbor classifiers
 - L1 distance, \(\chi^2 \) distance, quadratic distance, Earth Mover’s Distance
- Support vector machines
 - Linear classifiers
 - Margin maximization
 - The kernel trick
 - Kernel functions: histogram intersection, generalized Gaussian, pyramid match
 - Multi-class
- Of course, there are many other classifiers out there
 - Neural networks, boosting, decision trees, …

Important Concepts

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held out set
 - Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never “peek” at the test set!
- Evaluation
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well

Slide credit: Dan Klein