Neural Network training

- Optimization
 - Mini-batch SGD
 - Learning rate decay
 - Adaptive methods
- Massaging the numbers
 - Data augmentation
 - Data preprocessing
 - Weight initialization
 - Batch normalization
- Regularization
 - Classic regularization: L2 and L1
 - Dropout
 - Label smoothing
- Test time: ensembles, averaging predictions

Slides from L. Lazebnik

Mini-batch SGD

- Iterate over epochs
 - Iterate over dataset mini-batches \((x_1, y_1), \ldots, (x_b, y_b)\)
 - Compute gradient of the mini-batch loss:
 \[
 \nabla \hat{L} = \frac{1}{b} \sum_{i=1}^{b} \nabla l(w, x_i, y_i)
 \]
 - Update parameters:
 \[
 w \leftarrow w - \eta \nabla \hat{L}
 \]
 - Check for convergence, decide whether to decay learning rate
- What are the hyperparameters?
 - Mini-batch size, learning rate decay schedule, deciding when to stop
SGD and mini-batch size

- Larger mini-batches: more expensive and less frequent updates, lower gradient variance, more parallelizable
- In the literature, SGD with larger batches is generally reported to generalize more poorly (e.g., Keskar et al., 2016)
 - But can be made to work by using larger learning rates with larger mini-batches (Goyal et al., 2017)

Learning rate decay

- **Exponential decay**: $\eta = \eta_0 e^{-kt}$, where η_0 and k are hyperparameters, t is the iteration or epoch number
- **1/t decay**: $\eta = \eta_0 / (1 + kt)$
- **Step decay**: reduce rate by a constant factor every few epochs, e.g., by 0.5 every 5 epochs, 0.1 every 20 epochs
- **Manual**: watch validation error and reduce learning rate whenever it stops improving
Diagnosing learning rates

- Why does the learning curve look like this?

Image source: Stanford CS231n
A typical phenomenon

Possible explanation

Debugging learning curves

Image source: Stanford CS231n
Early stopping

• Idea: do not train a network to achieve too low training error
• Monitor validation error to decide when to stop

Figure from Deep Learning Book

Advanced optimizers

• SGD with momentum
• RSMProp
• Adam
SGD with momentum

What will SGD do?

• Introduce a “momentum” variable m and associated “friction” coefficient β:
 \[
 m \leftarrow \beta m - \eta \nabla L \\
 w \leftarrow w + m
 \]
 • Typically start with $\beta = 0.5$, gradually increase over time
SGD with momentum

- Introduce a “momentum” variable m and associated “friction” coefficient β:

 $$m \leftarrow \beta m - \eta \nabla L$$
 $$w \leftarrow w + m$$

- Move faster in directions with consistent gradient
- Avoid oscillating in directions with large but inconsistent gradients

Standard SGD

SGD with momentum

SGD with momentum

- Introduce a “momentum” variable m and associated “friction” coefficient β:

 $$m \leftarrow \beta m - \eta \nabla L$$
 $$w \leftarrow w + m$$

- Nesterov momentum: evaluate gradient at “lookahead” position $w + \beta m$
Adaptive per-parameter learning rates

- Gradients of different layers have different magnitudes
- Want an automatic way to set different learning rates for different parameters

Adagrad

- Keep track of history of gradient magnitudes, scale the learning rate for each parameter based on this history:

$$v_k \leftarrow v_k + \left\| \frac{\partial L}{\partial w_k} \right\|^2$$

$$w_k \leftarrow w_k - \frac{\eta}{\sqrt{v_k + \epsilon}} \frac{\partial L}{\partial w_k}$$

- Parameters with small gradients get large updates and vice versa
- Long-ago gradient magnitudes are not “forgotten” so learning rate decays too quickly

J. Duchi, *Adaptive subgradient methods for online learning and stochastic optimization*, JMLR 2011
RMSProp

- Introduce decay factor β (typically ≥ 0.9) to downweight past history exponentially:

$$v_k \leftarrow \beta v_k + (1 - \beta) \left\| \frac{\partial L}{\partial w_k} \right\|^2$$

$$w_k \leftarrow w_k - \frac{\eta}{\sqrt{v_k} + \epsilon} \frac{\partial L}{\partial w_k}$$

[Link to lecture slides](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)

Adam

- Combine RMSProp with momentum:

$$m \leftarrow \beta_1 m + (1 - \beta_1) \nabla L$$

$$v_k \leftarrow \beta v_k + (1 - \beta) \left\| \frac{\partial L}{\partial w_k} \right\|^2$$

$$w_k \leftarrow w_k - \frac{\eta}{\sqrt{v_k} + \epsilon} m_k$$

- Default parameters from paper: $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 1 \times 10^{-8}$

- Full algorithm includes bias correction term to account for m and v starting at 0:

$$\hat{m} = \frac{m}{1 - \beta_1^t}, \hat{v} = \frac{v}{1 - \beta_2^t} \quad (t \text{ is the timestep})$$

Which optimizer to use in practice?

- Adaptive methods tend to reduce initial training error faster than SGD
 - Adam with default parameters is a popular choice, SGD+momentum may work better but requires more tuning
- However, adaptive methods may quickly plateau on the validation set or generalize more poorly
 - Use Adam first, then switch to SGD?
 - Or just stick with plain old SGD? (Wilson et al., 2017)
- All methods require careful tuning and learning rate control

Massaging the numbers
Data augmentation

- Introduce transformations not adequately sampled in the training data
 - Geometric: flipping, rotation, shearing, multiple crops
 - Photometric: color transformations
Data augmentation

- Introduce transformations not adequately sampled in the training data
 - Geometric: flipping, rotation, shearing, multiple crops
 - Photometric: color transformations
 - Other: add noise, compression artifacts, lens distortions, etc.

- Limited only by your imagination and time/memory constraints!
- Avoid introducing obvious artifacts
Data preprocessing

- Zero centering
 - Subtract *mean image* – all input images need to have the same resolution
 - Subtract *per-channel means* – images don’t need to have the same resolution
- Optional: rescaling – divide each value by (per-pixel or per-channel) standard deviation
- Be sure to apply the same transformation at training and test time!
 - Save training set statistics and apply to test data

Weight initialization

- What’s wrong with initializing all weights to the same number (e.g., zero)?
Weight initialization

• Typically: initialize to random values sampled from zero-mean Gaussian: \(w \sim \mathcal{N}(0, \sigma^2) \)
• Standard deviation matters!
• Key idea: avoid reducing or amplifying the variance of layer responses, which would lead to vanishing or exploding gradients
• Common heuristics:
 • \(\sigma = 1/\sqrt{n_{\text{in}}} \), where \(n_{\text{in}} \) is the number of inputs to a layer
 • \(\sigma = 2/\sqrt{n_{\text{in}} + n_{\text{out}}} \) (Glorot and Bengio, 2010)
 • \(\sigma = \sqrt{2/n_{\text{in}}} \) for ReLU (He et al., 2015)
• Initializing biases: just set them to 0

Review: L2 regularization

• Regularized objective:
 \[
 \hat{L}(w) = \frac{\lambda}{2} \| w \|_2^2 + \sum_{i=1}^{n} l(w, x_i, y_i)
 \]
• Gradient of objective:
 \[
 \nabla \hat{L}(w) = \lambda w + \sum_{i=1}^{n} \nabla l(w, x_i, y_i)
 \]
• SGD update:
 \[
 w \leftarrow w - \eta (\lambda w + \nabla l(w, x_i, y_i)) \\
 w \leftarrow (1 - \eta \lambda) w - \eta \nabla l(w, x_i, y_i)
 \]
• Interpretation: weight decay
L1 regularization

- Regularized objective:
 \[
 \hat{L}(w) = \lambda \|w\|_1 + \sum_{i=1}^{n} l(w, x_i, y_i)
 \]
 \[
 = \lambda \sum_{d} |w_d| + \sum_{i=1}^{n} l(w, x_i, y_i)
 \]

- Gradient: \(\nabla \hat{L}(w) = \lambda \text{sgn}(w) + \sum_{i=1}^{n} \nabla l(w, x_i, y_i) \)

- SGD update:
 \[
 w \leftarrow w - \eta \lambda \text{sgn}(w) - \eta \nabla l(w, x_i, y_i)
 \]

- Interpretation: encouraging sparsity

Dropout

- At training time, in each forward pass, turn off some neurons with probability \(p \)
- At test time, to have deterministic behavior, multiply output of neuron by \(p \)

Dropout

• Intuitions
 • Prevent “co-adaptation” of units, increase robustness to noise
 • Train *implicit ensemble*

Current status of dropout

• Against
 • Slows down convergence
 • Made redundant by batch normalization or possibly even *clashes with it*
 • Unnecessary for larger datasets or with sufficient data augmentation

• In favor
 • Can still help in certain scenarios: e.g., used in Wide Residual Networks
Label smoothing

- **Idea:** avoid overly confident predictions, account for label noise
- When using softmax loss, replace hard 1 and 0 prediction targets with “soft” targets of $1 - \epsilon$ and $\frac{\epsilon}{C-1}$
- Used in Inception-v2 architecture

Test time

- **Ensembles:** train multiple independent models, then average their predicted label distributions
- Gives 1-2% improvement in most cases
- Can take multiple snapshots of models obtained during training, especially if you cycle the learning rate

G. Huang et al., *Snapshot ensembles: Train 1, get M for free*, ICLR 2017
Test time

- Average predictions across multiple crops of test image
 - There is a more elegant way to do this with fully convolutional networks (FCNs)

Attempt at a conclusion

- Training neural networks is still a black art
- Process requires close “babysitting”
- For many techniques, the reasons why, when, and whether they work are in active dispute
- Read everything but don’t trust anything
- It all comes down to (principled) trial and error