SCHEMA REFINEMENT AND NORMAL FORMS

Exercise 19.1 Briefly answer the following questions:

1. Define the term functional dependency.
2. Why are some functional dependencies called trivial?
3. Give a set of FDs for the relation schema $R(A, B, C, D)$ with primary key $A B$ under which R is in 1 NF but not in 2 NF .
4. Give a set of FDs for the relation schema $R(A, B, C, D)$ with primary key $A B$ under which R is in 2 NF but not in 3 NF .
5. Consider the relation schema $R(A, B, C)$, which has the FD $B \rightarrow C$. If A is a candidate key for R, is it possible for R to be in BCNF? If so, under what conditions? If not, explain why not.
6. Suppose we have a relation schema $R(A, B, C)$ representing a relationship between two entity sets with keys A and B, respectively, and suppose that R has (among others) the FDs $A \rightarrow B$ and $B \rightarrow A$. Explain what such a pair of dependencies means (i.e., what they imply about the relationship that the relation models).

Answer 19.1

1. Let R be a relational schema and let X and Y be two subsets of the set of all attributes of R. We say Y is functionally dependent on X , written $\mathrm{X} \rightarrow \mathrm{Y}$, if the Y-values are determined by the X -values. More precisely, for any two tuples r_{1} and r_{2} in (any instance of) R

$$
\pi_{X}\left(r_{1}\right)=\pi_{X}\left(r_{2}\right) \quad \Rightarrow \quad \pi_{Y}\left(r_{1}\right)=\pi_{Y}\left(r_{2}\right)
$$

2. Some functional dependencies are considered trivial because they contain superfluous attributes that do not need to be listed. Consider the FD: $A \rightarrow A B$. By reflexivity, A always implies A, so that the A on the right hand side is not necessary and can be dropped. The proper form, without the trivial dependency would then be $A \rightarrow B$.
3. Consider the set of FD: $A B \rightarrow C D$ and $B \rightarrow C$. $A B$ is obviously a key for this relation since $A B \rightarrow C D$ implies $A B \rightarrow A B C D$. It is a primary key since there are no smaller subsets of keys that hold over $R(A, B, C, D)$. The FD: $B \rightarrow C$ violates 2NF since:

- $C \in B$ is false; that is, it is not a trivial FD
- B is not a superkey
- C is not part of some key for R
- B is a proper subset of the key $A B$ (transitive dependency)

4. Consider the set of FD: $A B \rightarrow C D$ and $C \rightarrow D . A B$ is obviously a key for this relation since $A B \rightarrow C D$ implies $A B \rightarrow A B C D$. It is a primary key since there are no smaller subsets of keys that hold over $R(A, B, C, D)$. The FD: $C \rightarrow D$ violates 3 NF but not 2 NF since:

- $D \in C$ is false; that is, it is not a trivial FD
- C is not a superkey
- D is not part of some key for R

5. The only way R could be in BCNF is if B includes a key, i.e. B is a key for R .
6. It means that the relationship is one to one. That is, each A entity corresponds to at most one B entity and vice-versa. (In addition, we have the dependency $A B$ $\rightarrow C$, from the semantics of a relationship set.)

Exercise 19.2 Consider a relation R with five attributes $A B C D E$. You are given the following dependencies: $A \rightarrow B, B C \rightarrow E$, and $E D \rightarrow A$.

1. List all keys for R.
2. Is R in 3 NF ?
3. Is R in BCNF?

Answer 19.2

1. $\mathrm{CDE}, \mathrm{ACD}, \mathrm{BCD}$
2. R is in 3 NF because B, E and A are all parts of keys.
3. R is not in BCNF because none of $A, B C$ and ED contain a key.

Exercise 19.3 Consider the relation shown in Figure 19.1.

1. List all the functional dependencies that this relation instance satisfies.

X	Y	Z
x_{1}	y_{1}	z_{1}
x_{1}	y_{1}	z_{2}
x_{2}	y_{1}	z_{1}
x_{2}	y_{1}	z_{3}

Figure 19.1 Relation for Exercise 19.3.
2. Assume that the value of attribute Z of the last record in the relation is changed from z_{3} to z_{2}. Now list all the functional dependencies that this relation instance satisfies.

Answer 19.3

1. The following functional dependencies hold over $R: Z \rightarrow Y, X \rightarrow Y$, and $X Z \rightarrow Y$
2. Same as part 1. Functional dependency set is unchanged.

Exercise 19.4 Assume that you are given a relation with attributes $A B C D$.

1. Assume that no record has NULL values. Write an SQL query that checks whether the functional dependency $A \rightarrow B$ holds.
2. Assume again that no record has NULL values. Write an SQL assertion that enforces the functional dependency $A \rightarrow B$.
3. Let us now assume that records could have NULL values. Repeat the previous two questions under this assumption.

Answer 19.4 Assuming...

1. The following statement returns 0 iff no statement violates the FD $A \rightarrow B$.

SELECT COUNT (*)
FROM R AS R1, R AS R2
where (R1.B != R2.B) AND (R1.A = R2.A)
2. CREATE ASSERTION ADeterminesB

CHECK ((SELECT COUNT (*)
FROM R AS R1, R AS R2
WHERE (R1.B ! = R2.B) AND (R1.A = R2.A))
$=0$)
3. Note that the following queries can be written with the NULL and NOT NULL interchanged. Since we are doing a full join of a table and itself, we are creating tuples in sets of two therefore the order is not important.

```
SELECT COUNT (*)
FROM R AS R1, R AS R2
WHERE ((R1.B != R2.B) AND (R1.A = R2.A))
    OR ((R1.B is NULL) AND (R2.B is NOT NULL)
                AND (R1.A = R2.A))
CREATE ASSERTION ADeterminesBNull
CHECK ((SELECT COUNT (*)
        FROM R AS R1, R AS R2
        WHERE ((R1.B != R2.B) AND (R1.A = R2.A)))
                        OR ((R1.B is NULL) AND (R2.B is NOT NULL)
                    AND (R1.A = R2.A))
        =0)
```

Exercise 19.5 Consider the following collection of relations and dependencies. Assume that each relation is obtained through decomposition from a relation with attributes $A B C D E F G H I$ and that all the known dependencies over relation $A B C D E F G H I$ are listed for each question. (The questions are independent of each other, obviously, since the given dependencies over $A B C D E F G H I$ are different.) For each (sub)relation: (a) State the strongest normal form that the relation is in. (b) If it is not in BCNF, decompose it into a collection of BCNF relations.

1. $R 1(A, C, B, D, E), A \rightarrow B, C \rightarrow D$
2. R2 $(A, B, F), A C \rightarrow E, B \rightarrow F$
3. $R 3(A, D), D \rightarrow G, G \rightarrow H$
4. $R 4(D, C, H, G), A \rightarrow I, I \rightarrow A$
5. $R 5(A, I, C, E)$

Answer 19.5

1. 1NF. BCNF decomposition: $\mathrm{AB}, \mathrm{CD}, \mathrm{ACE}$.
2. 1NF. BCNF decomposition: AB, BF
3. BCNF.
4. BCNF.
5. BCNF.

Exercise 19.6 Suppose that we have the following three tuples in a legal instance of a relation schema S with three attributes $A B C$ (listed in order): $(1,2,3),(4,2,3)$, and $(5,3,3)$.

1. Which of the following dependencies can you infer does not hold over schema S ?
(a) $A \rightarrow B$, (b) $B C \rightarrow A$, (c) $B \rightarrow C$
2. Can you identify any dependencies that hold over S ?

Answer 19.6

1. $B C \rightarrow A$ does not hold over S (look at the tuples $(1,2,3)$ and $(4,2,3)$). The other tuples hold over S.
2. No. Given just an instance of S , we can say that certain dependencies (e.g., $A \rightarrow$ B and $\mathrm{B} \rightarrow C$) are not violated by this instance, but we cannot say that these dependencies hold with respect to S. To say that an FD holds w.r.t. a relation is to make a statement about all allowable instances of that relation!

Exercise 19.7 Suppose you are given a relation R with four attributes $A B C D$. For each of the following sets of FDs, assuming those are the only dependencies that hold for R, do the following: (a) Identify the candidate $\mathrm{key}(\mathrm{s})$ for R. (b) Identify the best normal form that R satisfies ($1 \mathrm{NF}, 2 \mathrm{NF}, 3 \mathrm{NF}$, or BCNF). (c) If R is not in BCNF, decompose it into a set of BCNF relations that preserve the dependencies.

1. $C \rightarrow D, C \rightarrow A, B \rightarrow C$
2. $B \rightarrow C, D \rightarrow A$
3. $A B C \rightarrow D, D \rightarrow A$
4. $A \rightarrow B, B C \rightarrow D, A \rightarrow C$
5. $A B \rightarrow C, A B \rightarrow D, C \rightarrow A, D \rightarrow B$

Answer 19.7

1. (a) Candidate keys: B
(b) R is in 2 NF but not 3 NF .
(c) $C \rightarrow D$ and $C \rightarrow A$ both cause violations of BCNF. One way to obtain a (lossless) join preserving decomposition is to decompose R into $A C, B C$, and $C D$.
2. (a) Candidate keys: $B D$
(b) R is in 1 NF but not 2 NF .
(c) Both $B \rightarrow C$ and $D \rightarrow A$ cause BCNF violations. The decomposition: $A D$, $B C, B D$ (obtained by first decomposing to $A D, B C D$) is BCNF and lossless and join-preserving.
3. (a) Candidate keys: $A B C, B C D$
(b) R is in 3NF but not BCNF.
(c) $A B C D$ is not in BCNF since $D \rightarrow A$ and D is not a key. However if we split up R as $A D, B C D$ we cannot preserve the dependency $A B C \rightarrow D$. So there is no BCNF decomposition.
4. (a) Candidate keys: A
(b) R is in 2NF but not 3NF (because of the FD: $B C \rightarrow D$).
(c) $B C \rightarrow D$ violates BCNF since $B C$ does not contain a key. So we split up R as in: $B C D, A B C$.
5. (a) Candidate keys: $A B, B C, C D, A D$
(b) R is in 3NF but not BCNF (because of the FD: $\mathrm{C} \rightarrow \mathrm{A}$).
(c) $C \rightarrow A$ and $D \rightarrow B$ both cause violations. So decompose into: $A C, B C D$ but this does not preserve $A B \rightarrow C$ and $A B \rightarrow D$, and $B C D$ is still not BCNF because $D \rightarrow B$. So we need to decompose further into: $A C, B D$, $C D$. However, when we attempt to revive the lost functioanl dependencies by adding $A B C$ and $A B D$, we that these relations are not in BCNF form. Therefore, there is no BCNF decomposition.

Exercise 19.8 Consider the attribute set $R=A B C D E G H$ and the FD set $F=\{A B \rightarrow$ $C, A C \rightarrow B, A D \rightarrow E, B \rightarrow D, B C \rightarrow A, E \rightarrow G\}$.

1. For each of the following attribute sets, do the following: (i) Compute the set of dependencies that hold over the set and write down a minimal cover. (ii) Name the strongest normal form that is not violated by the relation containing these attributes. (iii) Decompose it into a collection of BCNF relations if it is not in BCNF.

$$
\text { (a) } A B C \text {, (b) } A B C D \text {, (c) } A B C E G \text {, (d) } D C E G H \text {, (e) } A C E H
$$

2. Which of the following decompositions of $R=A B C D E G$, with the same set of dependencies F, is (a) dependency-preserving? (b) lossless-join?
(a) $\{A B, B C, A B D E, E G\}$
(b) $\{A B C, A C D E, A D G\}$

Answer 19.8

1. (a) i. R1 $=A B C$: The FD's are $A B \rightarrow C, A C \rightarrow B, B C \rightarrow A$.
ii. This is already a minimal cover.
iii. This is in BCNF since $A B, A C$ and $B C$ are candidate keys for $R 1$. (In fact, these are all the candidate keys for $R 1$).
(b) i. $R 2=A B C D$: The FD's are $A B \rightarrow C, A C \rightarrow B, B \rightarrow D, B C \rightarrow A$.
ii. This is a minimal cover already.
iii. The keys are: $A B, A C, B C . R 2$ is not in BCNF or even 2 NF because of the FD, $B \rightarrow D$ (B is a proper subset of a key!) However, it is in 1NF. Decompose as in: $A B C, B D$. This is a BCNF decomposition.
(c) i. $R 3=A B C E G$; The FDs are $A B \rightarrow C, A C \rightarrow B, B C \rightarrow A, E \rightarrow G$.
ii. This is in minimal cover already.
iii. The keys are: $A B E, A C E, B C E$. It is not even in 2 NF since E is a proper subset of the keys and there is a FD $E \rightarrow G$. It is in 1NF. Decompose as in: $A B E, A B C, E G$. This is a BCNF decompostion.
(d) i. $R_{4}=D C E G H$; The FD is $E \rightarrow G$.
ii. This is in minimal cover already.
iii. The key is $D C E H$; It is not in BCNF since in the FD $E \rightarrow G, E$ is a subset of the key and is not in 2 NF either. It is in 1 NF Decompose as in: $D C E H, E G$
(e) i. $R 5=A C E H$; No FDs exist.
ii. This is a minimal cover.
iii. Key is $A C E H$ itself.
iv. It is in BCNF form.
2. (a) The decomposition. $\{\mathrm{AB}, \mathrm{BC}, \mathrm{ABDE}, \mathrm{EG}\}$ is not lossless. To prove this consider the following instance of R :

$$
\left\{\left(a_{1}, b, c_{1}, d_{1}, e_{1}, g_{1}\right),\left(a_{2}, b, c_{2}, d_{2}, e_{2}, g_{2}\right)\right\}
$$

Because of the functional dependencies $B C \rightarrow A$ and $A B \rightarrow C, a_{1} \neq a_{2}$ if and only if $c_{1} \neq c_{2}$. It is easy to that the join $\mathrm{AB} \bowtie \mathrm{BC}$ contains 4 tuples:

$$
\left\{\left(a_{1}, b, c_{1}\right),\left(a_{1}, b, c_{2}\right),\left(a_{2}, b, c_{1}\right),\left(a_{2}, b, c_{2}\right)\right\}
$$

So the join of $A B, B C, A B D E$ and $E G$ will contain at least 4 tuples, (actually it contains 8 tuples) so we have a lossy decomposition here.

This decomposition does not preserve the FD, $A B \rightarrow C$ (or $A C \rightarrow B$)
(b) The decomposition $\{\mathrm{ABC}, \mathrm{ACDE}, \mathrm{ADG}\}$ is lossless. Intuitively, this is because the join of $A B C, A C D E$ and $A D G$ can be constructed in two steps; first construct the join of ABC and ACDE: this is lossless because their (attribute) intersection is AC which is a key for $A B C D E$ (in fact $A B C D E G$) so this is lossless. Now join this intermediate join with $A D G$. This is also lossless because the attribute intersection is is $A D$ and $A D \rightarrow A D G$. So by the test mentioned in the text this step is also a lossless decomposition.

