

This lecture note is based on notes by Anany Levitin and Jyh-Ming Lian.

Outline

Brute Force

- Examples: Exhaustive Search
- Divide and conquer

• Ideas

- Analysis: Master Theorem
- Examples: Mergesort

Traveling Salesman Problem

TSP: Find the shortest tour through a given set of n cities that visits each city exactly once before returning to the city where it starts.

$5 \begin{array}{c} 2 \\ 5 \\ 8 \\ \hline 7 \\ \hline 0 \\ 1 \end{array} \\ 3 \end{array}$					
Tour	Cost				
$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	2+3+7+5=17				
$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	2+4+7+8=21				
$a \to c \to b \to d \to a$	8 + 3 + 4 + 5 = 20				
$a \to c \to d \to b \to a$	8+7+4+2=21				
$a \to d \to b \to c \to a$	5+4+3+8=20				
$a \to d \to c \to b \to a$	5+7+3+2 = 17				

Traveling Salesman Problem

Analysis

- Input size: $n + n \cdot (n-1)/2 = n \cdot (n-1)/2$.
- Running time:

T(n) = (n-1)!.

Knapsack Problem

> Knapsack Problem: Given n objects, each object i has weight w_i and value v_i , and a knapsack of capacity W (in terms of weight), find most valuable items that fit into the knapsack

Items are not splittable

http://en.wikipedia.org/wiki/Knapsack_problem

Example: Knapsack capacity W = 16

Item	Weight	Value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

Subset	Total weight	Total value	
{1}	2	\$20	
$\{2\}$	5	\$30	
{3}	10	\$50	
{4}	5	\$10	
$\{1, 2\}$	7	\$50	
$\{1, 3\}$	12	\$70	
$\{1,4\}$	7	\$30	
$\{2,3\}$	15	\$80	
$\{2,4\}$	10	\$40	
$\{3,4\}$	15	\$60	
$\{1, 2, 3\}$	17	not feasible	
$\{1, 2, 4\}$	12	\$60	
$\{1, 3, 4\}$	17	not feasible	
$\{2, 3, 4\}$	20	not feasible	
$\{1, 2, 3, 4\}$	22	not feasible	

Knapsack Problem

Analysis

- Input size: n (items).
- Running time:

The number of subsets of an *n*-element set is 2^n , including \emptyset .

$$T(n) = \Omega(2^n).$$

Assignment Problem

> Assignment Problem: There are n people to execute n jobs, one person per job. If *i*th person is assigned the *j*th job, the cost is C[i, j], i, j = 1, ..., n.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

Find the assignment with the minimum total cost.

Assignment Problem

Analysis

- Input size: *n*.
- Running time:

T(n) = n!.

Summary for Brute Force

Strengths

- 1. Wide applicability
- 2. Simplicity
- 3. Yields reasonable algorithms for some important problems (e.g., matrix multiplication, sorting, searching, string matching)
- 4. In many cases, exhaustive search or its variation is the only known way to get exact solution

➤ Weaknesses

- 1. Rarely yields efficient algorithms. Some brute-force algorithms are unacceptably slow
- 2. Not as constructive as some other design techniques
- 3. Exhaustive-search algorithms run in a realistic amount of time only on very small instances

➤ Brute Force

• Examples: Exhaustive Search

Divide and conquer

• Ideas

- Analysis: Master Theorem
- Examples: Mergesort

Divide and Conquer

The most-well known algorithm design strategy:

- 1. Divide instance of problem into two or more smaller instances
- 2. Solve smaller instances recursively
- 3. Obtain solution to original (larger) instance by combining these solutions

Outline

Brute Force

• Examples: Exhaustive Search

Divide and conquer

• Ideas

- Analysis: Master Theorem
- Examples: Mergesort

General Divide-and-Conquer Recurrence

- Problem size: n. Divide the problems into b smaller instances; a of them need to be solved. f(n) is the time spent on dividing and merging.
- Master Theorem: If $f(n) \in \Theta(n^d)$, where $d \ge 0$, then

$$T(n) = \begin{cases} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

• Examples:

1.
$$T(n) = 4T(n/2) + n \Rightarrow T(n) =$$

2.
$$T(n) = 4T(n/2) + n^2 \Rightarrow T(n) =$$

3.
$$T(n) = 4T(n/2) + n^3 \Rightarrow T(n) =$$

Summary: Algorithm Analysis

- \succ Recursive algorithms
 - a. The iteration method
 - b. The substitution method
 - c. Master Theorem (T(n) = aT(n/b) + f(n).)

➤ Brute Force

• Examples: Exhaustive Search

Divide and conquer

- Ideas
- Analysis: Master Theorem
- Examples: Mergesort

Sorting Problem

- Given an array of n numbers, sort the elements in non-decreasing order.
- Input: An array $A[1,\ldots,n]$ of numbers
- $\bullet\,$ Output: An array $A[1,\ldots,n]$ of sorted numbers

Mergesort - Algorithm

> Given an array of n numbers, sort the elements in non-decreasing order.

Algorithm 0.1: MERGESORT($A[1, \ldots n]$)

```
\quad \text{if} \ n=1 \\
```

```
then return (A)
```

```
 \textbf{else} \begin{cases} B \leftarrow A[1 \cdots \lfloor \frac{n}{2} \rfloor] \\ C \leftarrow A[\lceil \frac{n}{2} \rceil \cdots n] \\ MergeSort(B) \\ MergeSort(C) \\ Merge(B,C,A) \end{cases}
```

 \succ Is this algorithm complete?

Mergesort - Algorithm

 \succ Merge two sorted arrays, B and C and put the result in A

Algorithm 0.2: Merge($B[1,\ldots p], C[1,\ldots q], A[1,\cdots p+q]$)

$$\begin{split} i \leftarrow 1; j \leftarrow 1 \\ \text{for } k \in \{1, 2, \dots p + q - 1\} \\ \text{do } \begin{cases} \text{if } B[i] < C[j] \\ \text{then } A[k] = B[i]; i \leftarrow i + 1 \\ \text{else } A[k] = C[j]; j \leftarrow j + 1 \end{cases} \end{split}$$

Mergesort - Analysis

> All cases have same time efficiency: $\Theta(n \log_2 n)$

 $T_{\mathsf{merge}}(n) = n - 1.$

$$T(n) = 2T(n/2) + n - 1, \quad \forall n > 1, \quad T(1) = 0$$

- > Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting: $\lceil \log_2 n! \rceil \approx n \log_2 n 1.44n$
- Space requirement: $\Theta(n)$ (not *in-place*) (In-place: The number are rearranged within the array.)
- Can be implemented without recursion?
- > Is this algorithm Mergesort stable?