
CS483-06 Brute Force & Divide and Conquer

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm & 4:30pm - 5:30pm or by

appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483_fall07/

This lecture note is based on notes by Anany Levitin and Jyh-Ming Lian.

CS483 Design and Analysis of Algorithms 1 Lecture 06, September 13, 2007

Outline

➣ Brute Force� Examples: Exhaustive Search

➣ Divide and conquer� Ideas� Analysis: Master Theorem� Examples: Mergesort

CS483 Design and Analysis of Algorithms 2 Lecture 06, September 13, 2007

Traveling Salesman Problem

➣ TSP: Find the shortest tour through a given set of n cities that visits each city

exactly once before returning to the city where it starts.

1

2

3
5 7

8

a b

c d

CS483 Design and Analysis of Algorithms 3 Lecture 06, September 13, 2007

1

2

35 78

a b

c d

Tour Cost

a→ b→ c→ d→ a 2 + 3 + 7 + 5 = 17

a→ b→ d→ c→ a 2 + 4 + 7 + 8 = 21

a→ c→ b→ d→ a 8 + 3 + 4 + 5 = 20

a→ c→ d→ b→ a 8 + 7 + 4 + 2 = 21

a→ d→ b→ c→ a 5 + 4 + 3 + 8 = 20

a→ d→ c→ b→ a 5 + 7 + 3 + 2 = 17

CS483 Design and Analysis of Algorithms 4 Lecture 06, September 13, 2007

Traveling Salesman Problem

Analysis� Input size: n + n · (n− 1)/2 = n · (n− 1)/2.� Running time:

T (n) = (n− 1)!.

CS483 Design and Analysis of Algorithms 5 Lecture 06, September 13, 2007

Knapsack Problem

➣ Knapsack Problem: Given n objects, each object i has weight wi and value

vi, and a knapsack of capacity W (in terms of weight), find most valuable

items that fit into the knapsack

Items are not splittable

CS483 Design and Analysis of Algorithms 6 Lecture 06, September 13, 2007

http://en.wikipedia.org/wiki/Knapsack_problem

Example: Knapsack capacity W = 16

Item Weight Value

1 2 $20

2 5 $30

3 10 $50

4 5 $10

CS483 Design and Analysis of Algorithms 7 Lecture 06, September 13, 2007

Subset Total weight Total value

{1} 2 $20

{2} 5 $30

{3} 10 $50

{4} 5 $10

{1, 2} 7 $50

{1, 3} 12 $70

{1, 4} 7 $30

{2, 3} 15 $80

{2, 4} 10 $40

{3, 4} 15 $60

{1, 2, 3} 17 not feasible

{1, 2, 4} 12 $60

{1, 3, 4} 17 not feasible

{2, 3, 4} 20 not feasible

{1, 2, 3, 4} 22 not feasible

CS483 Design and Analysis of Algorithms 8 Lecture 06, September 13, 2007

Knapsack Problem

Analysis� Input size: n (items).� Running time:

The number of subsets of an n-element set is 2n, including ∅.

T (n) = Ω(2n).

CS483 Design and Analysis of Algorithms 9 Lecture 06, September 13, 2007

Assignment Problem

➣ Assignment Problem: There are n people to execute n jobs, one person per

job. If ith person is assigned the jth job, the cost is C[i, j], i, j = 1, . . . , n.

Find the assignment with the minimum total cost.

Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

CS483 Design and Analysis of Algorithms 10 Lecture 06, September 13, 2007

Assignment Problem

Analysis� Input size: n.� Running time:

T (n) = n!.

CS483 Design and Analysis of Algorithms 11 Lecture 06, September 13, 2007

Summary for Brute Force

➣ Strengths

1. Wide applicability

2. Simplicity

3. Yields reasonable algorithms for some important problems (e.g., matrix

multiplication, sorting, searching, string matching)

4. In many cases, exhaustive search or its variation is the only known way to

get exact solution

➣ Weaknesses

1. Rarely yields efficient algorithms. Some brute-force algorithms are

unacceptably slow

2. Not as constructive as some other design techniques

3. Exhaustive-search algorithms run in a realistic amount of time only on very

small instances

CS483 Design and Analysis of Algorithms 12 Lecture 06, September 13, 2007

Outline

➣ Brute Force� Examples: Exhaustive Search

➣ Divide and conquer� Ideas� Analysis: Master Theorem� Examples: Mergesort

CS483 Design and Analysis of Algorithms 13 Lecture 06, September 13, 2007

Divide and Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by combining these solutions

CS483 Design and Analysis of Algorithms 14 Lecture 06, September 13, 2007

CS483 Design and Analysis of Algorithms 15 Lecture 06, September 13, 2007

Outline

➣ Brute Force� Examples: Exhaustive Search

➣ Divide and conquer� Ideas� Analysis: Master Theorem� Examples: Mergesort

CS483 Design and Analysis of Algorithms 16 Lecture 06, September 13, 2007

General Divide-and-Conquer Recurrence� Problem size: n. Divide the problems into b smaller instances; a of them

need to be solved. f(n) is the time spent on dividing and merging.� Master Theorem: If f(n) ∈ Θ(nd), where d ≥ 0, then

T (n) =















Θ(nd) if a < bd

Θ(nd log n) if a = bd

Θ(nlog
b

a) if a > bd� Examples:

1. T (n) = 4T (n/2) + n⇒ T (n) =

2. T (n) = 4T (n/2) + n2 ⇒ T (n) =

3. T (n) = 4T (n/2) + n3 ⇒ T (n) =

CS483 Design and Analysis of Algorithms 17 Lecture 06, September 13, 2007

Summary: Algorithm Analysis

➣ Recursive algorithms

a. The iteration method

b. The substitution method

c. Master Theorem (T (n) = aT (n/b) + f(n).)

CS483 Design and Analysis of Algorithms 18 Lecture 06, September 13, 2007

Outline

➣ Brute Force� Examples: Exhaustive Search

➣ Divide and conquer� Ideas� Analysis: Master Theorem� Examples: Mergesort

CS483 Design and Analysis of Algorithms 19 Lecture 06, September 13, 2007

Sorting Problem� Given an array of n numbers, sort the elements in non-decreasing order.� Input: An array A[1, . . . , n] of numbers� Output: An array A[1, . . . , n] of sorted numbers

CS483 Design and Analysis of Algorithms 20 Lecture 06, September 13, 2007

Mergesort - Algorithm

➣ Given an array of n numbers, sort the elements in non-decreasing order.

Algorithm 0.1: MERGESORT(A[1, . . . n])

if n = 1

then return (A)

else

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

B ← A[1 · · · ⌊n

2
⌋]

C ← A[⌈n

2
⌉ · · ·n]

MergeSort(B)

MergeSort(C)

Merge(B, C, A)

➣ Is this algorithm complete?

CS483 Design and Analysis of Algorithms 21 Lecture 06, September 13, 2007

Mergesort - Algorithm

➣ Merge two sorted arrays, B and C and put the result in A

Algorithm 0.2: MERGE(B[1, . . . p], C[1, . . . q], A[1, · · · p + q])

i← 1; j ← 1

for k ∈ {1, 2, . . . p + q − 1}

do















if B[i] < C[j]

then A[k] = B[i]; i← i + 1

else A[k] = C[j]; j ← j + 1

➣ Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 99

CS483 Design and Analysis of Algorithms 22 Lecture 06, September 13, 2007

Mergesort - Analysis

➣ All cases have same time efficiency: Θ(n log2 n)

Tmerge(n) = n− 1.

T (n) = 2T (n/2) + n− 1, ∀n > 1, T (1) = 0

➣ Number of comparisons in the worst case is close to theoretical minimum for

comparison-based sorting: ⌈log2 n!⌉ ≈ n log2 n− 1.44n

➣ Space requirement: Θ(n) (not in-place) (In-place: The number are

rearranged within the array.)

➣ Can be implemented without recursion?

➣ Is this algorithm Mergesort stable?

CS483 Design and Analysis of Algorithms 23 Lecture 06, September 13, 2007

