
Randomized Competitive
Algorithms for the List

Update Problem

Eric Popelka

Randomized Competitive Algorithms for the List Update Problem – p. 1/29



About the authors

Nick Reingold - AT&T Bell Labs

Jeffery Westbrook - Yale University

Daniel D. Sleator - Carnegie Mellon

Published in Algorithmica in 1994

Randomized Competitive Algorithms for the List Update Problem – p. 2/29



List update problem

Unsorted linear list

Cost of accessing an item is equal to its
distance from the front

Can perform transpositions, each with a unit
cost of one

Randomized Competitive Algorithms for the List Update Problem – p. 3/29



Deterministic
solution

Move-to-front (MTF)

Move an item to the front each time it is
accessed

2-competitive

MTF is the best that any deterministic online
algorithm can do

Randomized Competitive Algorithms for the List Update Problem – p. 4/29



Can we do better?

Yes, if we use randomization

BIT

Barely random algorithm

“Move-to-front every other access”

1.75-competitive

COUNTER√
3-competitive√
3 ≈ 1.73

Randomized Competitive Algorithms for the List Update Problem – p. 5/29



BIT-ACCESS(x)

Require: Each item x has a corresponding bit
b(x), initialized uniformly at random

b(x) = not(b(x))
if b(x) = 1 then

move x to the front;
end if
process request for item x;

Randomized Competitive Algorithms for the List Update Problem – p. 6/29



Analysis of BIT

σ: sequence of m accesses

Theorem: BIT is at most
1.75 · OPT (σ) − 3m/4

Proof similar to Homework #3

Randomized Competitive Algorithms for the List Update Problem – p. 7/29



Analysis of BIT

Lemma: After an event, b(x) ∀x is equally
likely to be 0 or 1, is independent of the bits of
other items, and is independent of the
positions of items in OPT

Proof:

Initial assignment of bit values is chosen
uniformly at random

Accesses change the values of the bits, but
everything is modulo 2

Therefore, the bits remain uniformly
distributed

Randomized Competitive Algorithms for the List Update Problem – p. 8/29



Analysis of BIT

For event i: ĉi = ci + Φi − Φi−1

An event may be an access or a transposition

Inversion: (x, y) in OPT, (y, x) in BIT

Type 1 inversions: b(x) = 0

Type 2 inversions: b(x) = 1

φ1: number of type 1 inversions

φ2: number of type 2 inversions

Φ = 2φ2 + φ1

Randomized Competitive Algorithms for the List Update Problem – p. 9/29



Analysis of BIT

Case 1: Event i is an access to item x.

Random variables for the change in potential:

A: new inversions being created

B: old inversions being removed

C: old inversions changing type

Φi − Φi−1 = A + B + C

B + C = −R, where R is the number of
inversions of the form (y, x)

Randomized Competitive Algorithms for the List Update Problem – p. 10/29



BIT Example

Event i is a request for “Becca”

OPTi−1 Mark Becca Stephen Ali

BITi−1 Stephen Ali Becca Mark

b(x) 1 0 1 0

Inversions: {(Stephen, Becca), (Stephen, Mark),
(Ali, Becca), (Ali, Mark), (Becca, Mark)}

R = # of inversions of the form (y, “Becca”) = 2

φ1 = 3 φ2 = 2 Φ = 2φ2 + φ1 = 7
Randomized Competitive Algorithms for the List Update Problem – p. 11/29



BIT Example

Event i is a request for “Becca”

OPTi Mark Becca Stephen Ali

BITi Stephen Ali Becca Mark

b(x) 1 0 0 0

Inversions: {(Stephen, Becca), (Stephen, Mark),
(Ali, Becca), (Ali, Mark), (Becca, Mark)}

R = # of inversions of the form (y, “Becca”) = 2

φ1 = 5 φ2 = 0 Φ = 2φ2 + φ1 = 5 ∆Φ = −2
Randomized Competitive Algorithms for the List Update Problem – p. 12/29



BIT Example

Event i + 1 is a request for “Becca”

OPTi+1 Mark Becca Stephen Ali

BITi+1 Becca Stephen Ali Mark

b(x) 1 0 0 0

Inversions: {(Stephen, Becca), (Stephen, Mark),
(Ali, Becca), (Ali, Mark), (Becca, Mark)}

R = # of inversions of the form (y, “Becca”) = 0

φ1 = 3 φ2 = 0 Φ = 2φ2 + φ1 = 3 ∆Φ = −2
Randomized Competitive Algorithms for the List Update Problem – p. 13/29



Analysis of BIT

E[ĉi] = E[ci + ∆Φ]

≤ E[(rank(x) + R) + (A + B + C)]

= E[(rank(x) + R) + (A − R)]

= rank(x) + E[A]

A: new inversions being created

B: old inversions being removed

C: old inversions changing type

R: # of (y, x) inversions

Randomized Competitive Algorithms for the List Update Problem – p. 14/29



Analysis of BIT

What’s the expected value of A?

Both BIT and OPT may move x forward

Let z1, z2, . . . , zk−1 be the items preceding x in
OPT

Inversion created if OPT or BIT (but not both)
move x forward past some zi

Randomized Competitive Algorithms for the List Update Problem – p. 15/29



Analysis of BIT

New random variable: Zi

Zi measures the change in potential due to
each pair (x, zi)

If b(x) = 0, x moves to the front of BIT

Worst case: New inversions (x, zi) of type
1 + b(zi) created for 1 ≤ i ≤ rank′(x) − 1

If b(x) = 1, x does not move

Now b(x) = 0

Worst case: New inversions (zi, x) of type
1 created for rank′(x) ≤ i ≤ rank(x) − 1

Randomized Competitive Algorithms for the List Update Problem – p. 16/29



BIT Example

rank(x) 1 2 3 4 5 6 7

OPTi−1 Mark Ali Kim Stephen Becca Will David

BITi−1 Stephen Will Kim David Becca Ali Mark

b(x) 0 0 1 1 1 1 1

15 Inversions:

(Stephen, Kim), (Stephen, Ali), (Stephen, Mark)

(Will, Kim), (Will, Becca), (Will, Ali), (Will, Mark)

(Kim, Ali), (Kim, Mark)

(David, Becca), (David, Ali), (David, Mark)

(Becca, Ali), (Becca, Mark)

(Ali, Mark)

Randomized Competitive Algorithms for the List Update Problem – p. 17/29



BIT Example

Event i is a request for “Becca”

rank(x) 1 2 3 4 5 6 7

OPTi Mark Ali Kim Becca Stephen Will David

BITi Stephen Will Kim David Becca Ali Mark

b(x) 0 0 1 1 0 1 1

16 Inversions:

(Stephen, Kim), (Stephen, Becca), (Stephen, Ali), (Stephen, Mark)

(Will, Kim), (Will, Becca), (Will, Ali), (Will, Mark)

(Kim, Ali), (Kim, Mark)

(David, Becca), (David, Ali), (David, Mark)

(Becca, Ali), (Becca, Mark)

(Ali, Mark) Randomized Competitive Algorithms for the List Update Problem – p. 18/29



Analysis of BIT

E[b(x)] = 1
2 ∀x

E[A] =

rank(x)−1∑

i=1

E[Zi]

≤
rank′(x)−1∑

i=1

1

2
(
1

2
· 2 +

1

2
· 1) +

rank(x)−1∑

i=rank′(x)

1

2
· 1

≤ 3
4(rank(x) − 1)

∴ E[ĉi] ≤ 1.75 · OPTi − 3
4

Randomized Competitive Algorithms for the List Update Problem – p. 19/29



Analysis of BIT

Case 2: OPT performs a transposition at event i

OPT will pay a cost of one

We might have an inversion now

It might be type 1 or type 2, each with a

probability of 1
2

A type 1 inversion increases Φ by 1

A type 2 inversion increases Φ by 2

E[ĉi] = 1
2 · 1 + 1

2 · 2
≤ 1.5 · OPTi

Randomized Competitive Algorithms for the List Update Problem – p. 20/29



COUNTER(s, S)

“Move-to-front on steroids”

s ∈ Z
+

S ⊂ {0, 1, . . . , s − 1}, S 6= ∅
Keeps a mod s counter for each item

Each counter is randomly set to some
number {0, 1, . . . , s − 1}
BIT is COUNTER(2, {1})

Randomized Competitive Algorithms for the List Update Problem – p. 21/29



COUNTER-ACCESS(s,
S, x)

decrement x’s counter mod s;
if x ∈ S then

move x to the front;
end if
process the request for item x;

Randomized Competitive Algorithms for the List Update Problem – p. 22/29



Analysis of COUNTER

c(x) = # of accesses to x before x moves to
the front

pj = probability that an item will next move to

the front after j accesses for j = 1, 2, . . . , s = 1
s

After initialization, Pr[c(x) = j] is pj ∀x

Claim: COUNTER(s, S) is

max{
s−1∑

j=1

jpj, 1 + p1

s−1∑

j=1

jpj}-competitive

Randomized Competitive Algorithms for the List Update Problem – p. 23/29



Analysis of COUNTER

Inversion (y, x) is type j if c(x) = j

φj = # of inversions of type j

Φ =
s∑

j=1

j · φj

Randomized Competitive Algorithms for the List Update Problem – p. 24/29



Analysis of COUNTER

Case 1: Event i is an access to item x.

x does not move to the front

c(x) decreases by one

∆Φ = # of inversions of the form (y, x)

x moves to the front

∆Φ = # of inversions of the form (y, x)

Randomized Competitive Algorithms for the List Update Problem – p. 25/29



Analysis of COUNTER

Let A be a random variable giving the number of
new inversions created

E[ĉi] = E[ci + ∆Φ]

= rank(x) + E[A]

≤ rank(x) + (rank′(x) − 1)p1

s∑

j=1

jpj

∴ COUNTERi ≤ (1 + p1

s∑

j=1

jpj) · OPTi

Randomized Competitive Algorithms for the List Update Problem – p. 26/29



Analysis of COUNTER

Case 2: OPT performs a transposition at event i

OPT will pay a cost of one

We might have an inversion now

E[∆Φ] =
s∑

j=1

jpj

∴ COUNTERi ≤ (
s∑

j=1

jpj) · OPTi

Randomized Competitive Algorithms for the List Update Problem – p. 27/29



Competitive Ratio of
COUNTER

Pick good values for s and S

COUNTER(7, {0, 2, 4}) ≈
1.735-competitive

Use the RANDOM-RESET algorithm

Keep a counter from 1 to s for each item

Move to front when an item’s counter gets
to 1, and reset it to j with some probability
πj

Simple Markov chain

Can get the best competitive ratio,
√

3

Randomized Competitive Algorithms for the List Update Problem – p. 28/29



References

References

[1] Fei Li. Online algorithms - introduction, list
update, 2010.

[2] Nick Reingold, Jeffery Westbrook, and
Daniel D. Sleator. Randomized competitive
algorithms for the list update problem.
Algorithmica, 11:15–32, 1994.
10.1007/BF01294261.

Randomized Competitive Algorithms for the List Update Problem – p. 29/29


	About the authors
	List update problem
	Deterministic solution
	Can we do better?
		extsc {BIT-Access}(x)
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
		extsc {Bit} Example
		extsc {Bit} Example
		extsc {Bit} Example
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
		extsc {Bit} Example
		extsc {BIT} Example
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
		extsc {Counter}(s, S)
		extsc {Counter-Access}(s, S, x)
	Analysis of 	extsc {Counter}
	Analysis of 	extsc {Counter}
	Analysis of 	extsc {Counter}
	Analysis of 	extsc {Counter}
	Analysis of 	extsc {Counter}
	Competitive Ratio of 	extsc {Counter}
	References

