Randomized Competitive Algorithms for the List Update Problem

Eric Popelka

About the authors

- Nick Reingold AT&T Bell Labs
- Jeffery Westbrook Yale University
- **Daniel D. Sleator** Carnegie Mellon
- Published in <u>Algorithmica</u> in 1994

List update problem

- Unsorted linear list
- Cost of accessing an item is equal to its distance from the front
- Can perform transpositions, each with a unit cost of one

Deterministic solution

- Move-to-front (MTF)
 - Move an item to the front each time it is accessed
 - 2-competitive
- MTF is the best that any deterministic online algorithm can do

Can we do better?

- Yes, if we use randomization
- BIT
 - Barely random algorithm
 - "Move-to-front every other access"
 - 1.75-competitive
- COUNTER
 - $\sqrt{3}$ -competitive
 - $\sqrt{3} \approx 1.73$

BIT-ACCESS(x)

Require: Each item x has a corresponding bit b(x), initialized uniformly at random

b(x) = not(b(x))if b(x) = 1 then move x to the front; end if process request for item x;

• σ : sequence of m accesses

Theorem: BIT is at most $1.75 \cdot OPT(\sigma) - 3m/4$

Proof similar to Homework #3

■ Lemma: After an event, b(x) ∀x is equally likely to be 0 or 1, is independent of the bits of other items, and is independent of the positions of items in OPT

Proof:

- Initial assignment of bit values is chosen uniformly at random
- Accesses change the values of the bits, but everything is modulo 2
- Therefore, the bits remain uniformly distributed

- For event *i*: $\hat{c}_i = c_i + \Phi_i \Phi_{i-1}$
- An event may be an access or a transposition
- Inversion: (x, y) in OPT, (y, x) in BIT
- Type 1 inversions: b(x) = 0
- Type 2 inversions: b(x) = 1
- ϕ_1 : number of type 1 inversions
- ϕ_2 : number of type 2 inversions
- $\bullet \Phi = 2\phi_2 + \phi_1$

Case 1: Event i is an access to item x.

- Random variables for the change in potential:
 - A: new inversions being created
 - B: old inversions being removed
 - C: old inversions changing type

$$\bullet \Phi_i - \Phi_{i-1} = A + B + C$$

■ B + C = -R, where R is the number of inversions of the form (y, x)

Event *i* is a request for "Becca"

OPT_{i-1}	Mark	Becca	Stephen	Ali	
BIT_{i-1}	Stephen	Ali	Becca	Mark	
b(x)	1	0	1	0	

Inversions: {(Stephen, Becca), (Stephen, Mark), (Ali, Becca), (Ali, Mark), (Becca, Mark)}

 $\mathbf{R} = \#$ of inversions of the form (y, "Becca") = 2

$$\phi_1 = 3$$
 $\phi_2 = 2$ $\Phi = 2\phi_2 + \phi_1 = 7$

Event *i* is a request for "Becca"

OPT_i	Mark	Becca	Stephen	Ali
BIT_i	Stephen	Ali	Becca	Mark
b(x)	1	0	0	0

Inversions: {(Stephen, Becca), (Stephen, Mark), (Ali, Becca), (Ali, Mark), (Becca, Mark)}

 $\mathbf{R} = \#$ of inversions of the form (y, "Becca") = 2

 $\phi_1 = 5$ $\phi_2 = 0$ $\Phi = 2\phi_2 + \phi_1 = 5$ $\Delta \Phi = -2$

BIT Example

Event i + 1 is a request for "Becca"

OPT_{i+1}	Mark	Becca	Stephen	Ali	
BIT_{i+1}	Becca	Stephen	Ali	Mark	
b(x)	1	0	0	0	

Inversions: {(Stephen, Becca), (Stephen, Mark), (Ali, Becca), (Ali, Mark), (Becca, Mark)}

 $\mathbf{R} = \#$ of inversions of the form (y, "Becca") = 0

$$\phi_1 = 3$$
 $\phi_2 = 0$ $\Phi = 2\phi_2 + \phi_1 = 3$ $\Delta \Phi = -2$

$$\begin{split} \mathsf{E}[\hat{c}_i] &= \mathsf{E}[c_i + \Delta \Phi] \\ &\leq \mathsf{E}[(\mathsf{rank}(x) + R) + (A + B + C)] \\ &= \mathsf{E}[(\mathsf{rank}(x) + R) + (A - R)] \\ &= \mathsf{rank}(x) + \mathsf{E}[A] \end{split}$$

- A: new inversions being created
- **B**: old inversions being removed
- **C**: old inversions changing type
- **R:** # of (y, x) inversions

What's the expected value of A?

- Both BIT and OPT may move x forward
- Let $z_1, z_2, \ldots, z_{k-1}$ be the items preceding x in OPT
- Inversion created if OPT or BIT (but not both) move x forward past some z_i

New random variable: Z_i

Z_i measures the change in potential due to each pair (x, z_i)

If b(x) = 0, x moves to the front of BIT

- Worst case: New inversions (x, z_i) of type $1 + b(z_i)$ created for $1 \leq i \leq \operatorname{rank}'(x) 1$
- If b(x) = 1, x does not move
 - Now b(x) = 0
 - Worst case: New inversions (z_i, x) of type
 1 created for rank' $(x) \leq i \leq \operatorname{rank}(x) 1$

BIT Example

rank(x)	1	2	3	4	5	6	7
OPT_{i-1}	Mark	Ali	Kim	Stephen	Becca	Will	David
BIT_{i-1}	Stephen	Will	Kim	David	Becca	Ali	Mark
b(x)	0	0	1	1	1	1	1

15 Inversions:

- (Stephen, Kim), (Stephen, Ali), (Stephen, Mark)
- (Will, Kim), (Will, Becca), (Will, Ali), (Will, Mark)
- (Kim, Ali), (Kim, Mark)
- (David, Becca), (David, Ali), (David, Mark)
- (Becca, Ali), (Becca, Mark)
- (Ali, Mark)

BIT Example

Event *i* is a request for "Becca"

rank(x)	1	2	3	4	5	6	7
OPT_i	Mark	Ali	Kim	Becca	Stephen	Will	David
BIT_i	Stephen	Will	Kim	David	Becca	Ali	Mark
b(x)	0	0	1	1	0	1	1

16 Inversions:

- (Stephen, Kim), (Stephen, Becca), (Stephen, Ali), (Stephen, Mark)
- (Will, Kim), (Will, Becca), (Will, Ali), (Will, Mark)
- (Kim, Ali), (Kim, Mark)
- (David, Becca), (David, Ali), (David, Mark)
- (Becca, Ali), (Becca, Mark)
- (Ali, Mark)

$$\mathsf{E}[b(x)] = \frac{1}{2} \ \forall x$$

$$\mathsf{E}[A] = \sum_{i=1}^{\mathrm{rank}(x)-1} \mathsf{E}[Z_i]$$

$$\leq \sum_{i=1}^{\operatorname{rank}'(x)-1} \frac{1}{2} \left(\frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 1\right) + \sum_{i=\operatorname{rank}'(x)}^{\operatorname{rank}(x)-1} \frac{1}{2} \cdot 1$$

$$\leq \frac{3}{4} \left(\operatorname{rank}(x) - 1\right)$$

 $\therefore \mathsf{E}[\hat{c}_i] \le 1.75 \cdot OPT_i - \frac{3}{4}$

Randomized Competitive Algorithms for the List Update Problem - p. 19/29

Case 2: OPT performs a transposition at event *i*

- OPT will pay a cost of one
- We might have an inversion now
- It might be type 1 or type 2, each with a probability of ¹/₂
- A type 1 inversion increases Φ by 1
- \blacksquare A type 2 inversion increases Φ by 2

$$\mathsf{E}[\hat{c}_i] = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 \\ \leq 1.5 \cdot OPT_i$$

COUNTER(S, S)

- "Move-to-front on steroids"
- $\blacksquare s \in \mathbb{Z}^+$
- $\blacksquare S \subset \{0, 1, \dots, s 1\}, S \neq \emptyset$
- \blacksquare Keeps a mod s counter for each item
- Each counter is randomly set to some number $\{0, 1, \ldots, s-1\}$
- BIT is COUNTER(2, {1})

COUNTER-ACCESS(S, S, X)

decrement x's counter mod s; if $x \in S$ then move x to the front; end if process the request for item x;

- c(x) = # of accesses to x before x moves to the front
- p_j = probability that an item will next move to the front after j accesses for $j = 1, 2, ..., s = \frac{1}{s}$
- After initialization, $\Pr[c(x) = j]$ is $p_j \forall x$

Claim: COUNTER(s, S) is

$$\max\{\sum_{j=1}^{s-1} jp_j, 1+p_1\sum_{j=1}^{s-1} jp_j\}\text{-competitive}$$

Inversion (y, x) is type j if c(x) = j
\$\phi_j\$ = # of inversions of type j

$$\bullet \Phi = \sum_{j=1}^{s} j \cdot \phi_j$$

Case 1: Event i is an access to item x.

 $\blacksquare x$ does not move to the front

 \mathbf{I} c(x) decreases by one

• $\Delta \Phi = #$ of inversions of the form (y, x)

 $\blacksquare x$ moves to the front

• $\Delta \Phi = \#$ of inversions of the form (y, x)

Let **A** be a random variable giving the number of new inversions created

$$\begin{split} \mathsf{E}[\hat{c}_i] &= \mathsf{E}[c_i + \Delta \Phi] \\ &= \mathsf{rank}(x) + \mathsf{E}[A] \\ &\leq \mathsf{rank}(x) + (\mathsf{rank}'(x) - 1) p_1 \sum_{j=1}^s j p_j \end{split}$$

$$\therefore COUNTER_i \le (1 + p_1 \sum_{j=1}^s jp_j) \cdot OPT_i$$

Case 2: OPT performs a transposition at event i

- OPT will pay a cost of one
- We might have an inversion now

•
$$\mathbf{E}[\Delta \Phi] = \sum_{j=1}^{s} jp_j$$

• $\therefore COUNTER_i \le (\sum_{j=1}^{s} jp_j) \cdot OPT_i$

Competitive Ratio of COUNTER

Pick good values for s and S
 COUNTER(7, {0, 2, 4}) ≈
 1.735-competitive

Use the RANDOM-RESET algorithm

- Keep a counter from 1 to s for each item
- Move to front when an item's counter gets to 1, and reset it to j with some probability π_j

Simple Markov chain

 \blacksquare Can get the best competitive ratio, $\sqrt{3}$

References

- [1] Fei Li. Online algorithms introduction, list update, 2010.
- [2] Nick Reingold, Jeffery Westbrook, and Daniel D. Sleator. Randomized competitive algorithms for the list update problem. <u>Algorithmica</u>, 11:15–32, 1994. 10.1007/BF01294261.