Randomized Competitive Algorithms for the List Update Problem

Eric Popelka

About the authors

■ Nick Reingold - AT\&T Bell Labs
■ Jeffery Westbrook - Yale University

- Daniel D. Sleator - Carnegie Mellon

■ Published in Algorithmica in 1994

List update problem

■ Unsorted linear list

- Cost of accessing an item is equal to its distance from the front
- Can perform transpositions, each with a unit cost of one

Deterministic solution

■ Move-to-front (MTF)

- Move an item to the front each time it is accessed
- 2-competitive

■ MTF is the best that any deterministic online algorithm can do

Can we do better?

- Yes, if we use randomization
- BIT
- Barely random algorithm
- "Move-to-front every other access"
- 1.75-competitive
- CoUnter
- $\sqrt{3}$-competitive
$-\sqrt{3} \approx 1.73$

BIT-Access(x)

Require: Each item x has a corresponding bit $b(x)$, initialized uniformly at random
$b(x)=\operatorname{not}(b(x))$
if $b(x)=1$ then
move x to the front; end if
process request for item x;

Analysis of BIT

$\square \sigma$: sequence of m accesses

- Theorem: BIT is at most
$1.75 \cdot O P T(\sigma)-3 m / 4$
- Proof similar to Homework \#3

Analysis of BIT

■ Lemma: After an event, $b(x) \forall x$ is equally likely to be 0 or 1 , is independent of the bits of other items, and is independent of the positions of items in OPT

- Proof:
- Initial assignment of bit values is chosen uniformly at random
$■$ Accesses change the values of the bits, but everything is modulo 2
- Therefore, the bits remain uniformly distributed

Analysis of BIT

■ For event $i: \hat{c}_{i}=c_{i}+\Phi_{i}-\Phi_{i-1}$
$■$ An event may be an access or a transposition

- Inversion: (x, y) in OPT, (y, x) in BIT
\square Type 1 inversions: $b(x)=0$
- Type 2 inversions: $b(x)=1$
- ϕ_{1} : number of type 1 inversions
- ϕ_{2} : number of type 2 inversions

■ $\Phi=2 \phi_{2}+\phi_{1}$

Analysis of BIT

Case 1: Event i is an access to item x.
\square Random variables for the change in potential:

- A: new inversions being created

■ B: old inversions being removed
$■$ C: old inversions changing type
■ $\Phi_{i}-\Phi_{i-1}=A+B+C$

- $B+C=-R$, where R is the number of inversions of the form (y, x)

Bit Example

Event i is a request for "Becca"

$\boldsymbol{O P T}$	Mark	Becca	Stephen	Ali
$\boldsymbol{B I T}$	i-1	Stephen	Ali	Becca
$\boldsymbol{b}(\boldsymbol{x})$	1	0	1	0

Inversions: $\{($ Stephen, Becca), (Stephen, Mark), (Ali, Becca), (Ali, Mark), (Becca, Mark)\}
$\mathbf{R}=$ \# of inversions of the form (y, "Becca") $=2$

$$
\phi_{1}=3 \quad \phi_{2}=2 \quad \Phi=2 \phi_{2}+\phi_{1}=7
$$

Bit Example

Event i is a request for "Becca"

$\boldsymbol{O P T}$	Mark	Becca	Stephen	Ali
$\boldsymbol{B I T}_{\boldsymbol{i}}$	Stephen	Ali	Becca	Mark
$\boldsymbol{b}(\boldsymbol{x})$	1	0	0	0

Inversions: $\{($ Stephen, Becca), (Stephen, Mark), (Ali, Becca), (Ali, Mark), (Becca, Mark)\}
$\mathbf{R}=$ \# of inversions of the form (y,"Becca") $=2$

$$
\phi_{1}=5 \quad \phi_{2}=0 \quad \Phi=2 \phi_{2}+\phi_{1}=5 \quad \Delta \Phi=-2
$$

Bit Example

Event $i+1$ is a request for "Becca"

$\boldsymbol{O P T}$	Mark	Becca	Stephen	Ali
$\boldsymbol{B I T} \boldsymbol{T}_{i+\boldsymbol{1}}$	Becca	Stephen	Ali	Mark
$\boldsymbol{b}(\boldsymbol{x})$	1	0	0	0

Inversions: $\{($ Stephen, Becca), (Stephen, Mark), (Ali, Becca), (Ali, Mark), (Becca, Mark)\}
$\mathbf{R}=\#$ of inversions of the form (y, "Becca") $=0$
$\phi_{1}=3 \quad \phi_{2}=0 \quad \Phi=2 \phi_{2}+\phi_{1}=3 \quad \Delta \Phi=-2$

Analysis of BIT

$$
\begin{aligned}
\mathrm{E}\left[\hat{c}_{i}\right] & =\mathrm{E}\left[c_{i}+\Delta \Phi\right] \\
& \leq \mathrm{E}[(\operatorname{rank}(x)+R)+(A+B+C)] \\
& =\mathrm{E}[(\operatorname{rank}(x)+R)+(A-R)] \\
& =\operatorname{rank}(x)+\mathrm{E}[A]
\end{aligned}
$$

- A: new inversions being created

■ B: old inversions being removed
■ C: old inversions changing type
■ R: \# of (y, x) inversions

Analysis of BIT

What's the expected value of \mathbf{A} ?

- Both BIT and OPT may move x forward
$\boxed{\text { Let }} z_{1}, z_{2}, \ldots, z_{k-1}$ be the items preceding x in OPT

■ Inversion created if OPT or BIT (but not both) move x forward past some z_{i}

Analysis of BIT

New random variable: $\boldsymbol{Z}_{\boldsymbol{i}}$
$\square Z_{i}$ measures the change in potential due to each pair $\left(x, z_{i}\right)$

- If $b(x)=0, x$ moves to the front of BIT

■ Worst case: New inversions $\left(\boldsymbol{x}, \boldsymbol{z}_{i}\right)$ of type $1+b\left(z_{i}\right)$ created for $1 \leq i \leq \operatorname{rank}^{\prime}(x)-1$
■ If $b(x)=1, x$ does not move
■ Now $b(x)=0$

- Worst case: New inversions $\left(\boldsymbol{z}_{i}, \boldsymbol{x}\right)$ of type 1 created for $\operatorname{rank}^{\prime}(x) \leq i \leq \operatorname{rank}(x)-1$

Bit Example

$\boldsymbol{\operatorname { a n k }}(\boldsymbol{x})$	1	2	3	4	5	6	7
$\boldsymbol{O P} \boldsymbol{T}_{\boldsymbol{i}-\mathbf{1}}$	Mark	Ali	Kim	Stephen	Becca	Will	David
$\boldsymbol{B I T} \boldsymbol{T}_{\boldsymbol{i}-\mathbf{1}}$	Stephen	Will	Kim	David	Becca	Ali	Mark
$\boldsymbol{b}(\boldsymbol{x})$	0	0	1	1	1	1	1

15 Inversions:

■ (Stephen, Kim), (Stephen, Ali), (Stephen, Mark)

- (Will, Kim), (Will, Becca), (Will, Ali), (Will, Mark)

■ (Kim, Ali), (Kim, Mark)
■ (David, Becca), (David, Ali), (David, Mark)

- (Becca, Ali), (Becca, Mark)
- (Ali, Mark)

BIT Example

Event i is a request for "Becca"

$\boldsymbol{\operatorname { a n k }}(\boldsymbol{x})$	1	2	3	4	5	6	7
$\boldsymbol{O P T _ { \boldsymbol { i } }}$	Mark	Ali	Kim	Becca	Stephen	Will	David
$\boldsymbol{B I T} \boldsymbol{T}_{\boldsymbol{i}}$	Stephen	Will	Kim	David	Becca	Ali	Mark
$\boldsymbol{b}(\boldsymbol{x})$	0	0	1	1	0	1	1

16 Inversions:
(Stephen, Kim), (Stephen, Becca), (Stephen, Ali), (Stephen, Mark)
(Will, Kim), (Will, Becca), (Will, Ali), (Will, Mark)

- (Kim, Ali), (Kim, Mark)

■ (David, Becca), (David, Ali), (David, Mark)

- (Becca, Ali), (Becca, Mark)
(Ali, Mark)

Analysis of BIT

$$
\begin{aligned}
\mathrm{E}[b(x)] & =\frac{1}{2} \forall x \\
\mathrm{E}[A] & =\sum_{i=1}^{\operatorname{rank}(x)-1} \mathrm{E}\left[Z_{i}\right] \\
& \leq \sum_{i=1}^{\operatorname{rank}(x)-1} \frac{1}{2}\left(\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 1\right)+\sum_{i=\operatorname{rank}(x)}^{\operatorname{rank}(x)-1} \frac{1}{2} \cdot 1 \\
& \leq \frac{3}{4}(\operatorname{rank}(x)-1)
\end{aligned}
$$

$\therefore \mathrm{E}\left[\hat{c}_{i}\right] \leq 1.75 \cdot O P T_{i}-\frac{3}{4}$

Analysis of BIT

Case 2: OPT performs a transposition at event i

- OPT will pay a cost of one
- We might have an inversion now
- It might be type 1 or type 2, each with a probability of $\frac{1}{2}$
- A type 1 inversion increases Φ by 1
- A type 2 inversion increases Φ by 2
. $\mathrm{E}\left[\hat{c}_{i}\right]=\frac{1}{2} \cdot 1+\frac{1}{2} \cdot 2$

$$
\leq 1.5 \cdot O P T_{i}
$$

Counter(s, S)

■ "Move-to-front on steroids"
$\square s \in \mathbb{Z}^{+}$
■ $S \subset\{0,1, \ldots, s-1\}, S \neq \emptyset$

- Keeps a mod s counter for each item
- Each counter is randomly set to some number $\{0,1, \ldots, s-1\}$
- BIt is Counter(2, $\{1\}$)

Counter-Access(s, S, x)

decrement x 's counter mod s; if $x \in S$ then move x to the front; end if process the request for item x;

Analysis of Counter

$\square c(x)=\#$ of accesses to x before x moves to the front

- $p_{j}=$ probability that an item will next move to the front after j accesses for $j=1,2, \ldots, s=\frac{1}{s}$
\square After initialization, $\operatorname{Pr}[c(x)=j]$ is $p_{j} \forall x$
■ Claim: COUNTER (s, S) is
$\max \left\{\sum_{j=1}^{s-1} j p_{j}, 1+p_{1} \sum_{j=1}^{s-1} j p_{j}\right\}$-competitive

Analysis of Counter

■ Inversion (y, x) is type j if $c(x)=j$

- $\phi_{j}=\#$ of inversions of type j

■ $\Phi=\sum_{j=1}^{s} j \cdot \phi_{j}$

Analysis of Counter

Case 1: Event i is an access to item x.

- x does not move to the front
- $c(x)$ decreases by one
- $\Delta \Phi=\#$ of inversions of the form (y, x)
- x moves to the front
$-\Delta \Phi=\#$ of inversions of the form (y, x)

Analysis of Counter

Let \mathbf{A} be a random variable giving the number of new inversions created

$$
\begin{aligned}
& \mathrm{E}\left[\hat{c}_{i}\right]=\mathrm{E}\left[c_{i}+\Delta \Phi\right] \\
&=\operatorname{rank}(x)+\mathrm{E}[A] \\
& \leq \operatorname{rank}(x)+\left(\operatorname{rank}^{\prime}(x)-1\right) p_{1} \sum_{j=1}^{s} j p_{j} \\
& \therefore C O U N T E R_{i} \leq\left(1+p_{1} \sum_{j=1}^{s} j p_{j}\right) \cdot O P T_{i}
\end{aligned}
$$

Analysis of Counter

Case 2: OPT performs a transposition at event i

- OPT will pay a cost of one

■ We might have an inversion now

$■ \operatorname{COUNTER} R_{i} \leq\left(\sum_{j=1}^{s} j p_{j}\right) \cdot O P T_{i}$

Competitive Ratio of COUNTER

- Pick good values for s and S

■ COUNTER(7, \{0, 2, 4\}) \approx 1.735-competitive

- Use the Random-Reset algorithm

■ Keep a counter from 1 to s for each item

- Move to front when an item's counter gets to 1 , and reset it to j with some probability π_{j}
- Simple Markov chain

■ Can get the best competitive ratio, $\sqrt{3}$

References

References

[1] Fei Li. Online algorithms - introduction, list update, 2010.
[2] Nick Reingold, Jeffery Westbrook, and Daniel D. Sleator. Randomized competitive algorithms for the list update problem. Algorithmica, 11:15-32, 1994. 10.1007/BF01294261.

