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Module 5

Arrays
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Introduction to Arrays

 An array is a data structure used to process a 
collection of data that is all of the same type
 An array behaves like a numbered list of 

variables with a uniform naming mechanism
 It has a part that does not change:  the name 

of the array
 It has a part that can change:  an integer in 

square brackets
 For example, given four scores:

chapter[0], chapter[1], chapter[2], chapter[3]
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Creating and Accessing Arrays

 An array that behaves like this collection of variables, 
all of type Chapter, can be created using one 
statement as follows:
Chapter[] chapter = new Chapter[4];

 Or using two statements:
Chapter[] chapter;
chapter = new Chapter[4];
 The first statement declares the variable chapter 

to be of the array type Chapter[]
 The second statement creates an array with four 

numbered variables of type Chapter and makes 
the variable chapter a name for the array
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Creating and Accessing Arrays

 The individual variables that together make 
up the array are called indexed variables
 They can also be called subscripted variables 

or elements of the array
 The number in square brackets is called an 

index or subscript
 In Java, indices must be numbered starting 

with 0, and nothing else
chapter[0], chapter[1], chapter[2], chapter[3]
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Creating and Accessing Arrays

 The number of indexed variables in an array 
is called the length or size of the array

 When an array is created, the length of the 
array is given in square brackets after the 
array type 

 The indexed variables are then numbered 
starting with 0, and ending with the integer 
that is one less than the length of the array
chapter[0], chapter[1], chapter[2], chapter[3]
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Creating and Accessing Arrays

chapter = new Chapter[4];
 A variable may be used in place of the integer (i.e., in 

place of the integer 4 above) 
 The value of this variable can then be read 

from the keyboard
 This enables the size of the array to be 

determined when the program is run
chapter = new Chapter[count];

 An array can have indexed variables of any type, 
including any class type

 All of the indexed variables in a single array must be 
of the same type, called the base type of the array
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Declaring and Creating an Array

 An array is declared and created in almost the same 
way that objects are declared and created:

BaseType[] ArrayName = new BaseType[size];

 The size may be given as an expression that 
evaluates to a nonnegative integer, for example, an 
int variable

char[] line = new char[80];

double[] reading = new double[count];

Person[] specimen = new Person[100];
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Referring to Arrays and Array 
Elements
 Each array element can be used just like any other 

single variable by referring to it using an indexed 
expression:  score[0]

 The array itself (i.e., the entire collection of indexed 
variables) can be referred to using the array name 
(without any square brackets):  score

 An array index can be computed when a program is 
run
 It may be represented by a variable:  
score[index]

 It may be represented by an expression that 
evaluates to a suitable integer:  score[next + 1]
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Using the score Array in a Program

 The for loop is ideally suited for performing array 
manipulations:
for (index = 0; index < 5; index++)

     System.out.println(score[index] +

         " differs from max by " + 

         (max-score[index]) );
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Three Ways to Use Square Brackets 
[] with an Array Name
 Square brackets can be used to create a type 

name:
double[] score;

 Square brackets can be used with an integer 
value as part of the special syntax Java uses 
to create a new array:
score = new double[5];

 Square brackets can be used to name an 
indexed variable of an array:
max = score[0];
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The length Instance Variable

 An array is considered to be an object
 Since other objects can have instance variables, so can 

arrays
 Every array has exactly one instance variable named 
length
 When an array is created, the instance variable 
length is automatically set equal to its size

  The value of length cannot be changed (other than 
by creating an entirely new array with new)
double[] score = new double[5];

 Given score above, score.length has a value of 
5
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Array Index Out of Bounds

 Array indices always start with 0, and always end with the 
integer that is one less than the size of the array
 The most common programming error made when using 

arrays is attempting to use a nonexistent array index
 When an index expression evaluates to some value other 

than those allowed by the array declaration, the index is said 
to be out of bounds
 An out of bounds index will cause a program to terminate 

with a run-time error message
 Array indices get out of bounds most commonly at the 

first or last iteration of a loop that processes the array:  
Be sure to test for this!
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Initializing Arrays

 An array can be initialized when it is declared
 Values for the indexed variables are enclosed 

in braces, and separated by  commas
 The array size is automatically set to the 

number of values in the braces

int[] age = {2, 12, 1};
 Given age above, age.length has a value 

of 3
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Initializing Arrays

 Another way of initializing an array is by using a for 
loop
double[] reading = new double[100];
int index;
for (index = 0; 
     index < reading.length; index++)
  reading[index] = 42.0;

 If the elements of an array are not initialized explicitly, 
they will automatically be initialized to the default 
value for their base type
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An Array of Characters Is Not a String

 An array of characters is conceptually a list 
of characters, and so is conceptually like a 
string

 However, an array of characters is not an 
object of the class String
char[] a = {'A', 'B', 'C'};
String s = a; //Illegal!

 An array of characters can be converted to 
an object of type String, however
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An Array of Characters Is Not a String

 The class String has a constructor that has 
a single parameter of type char[]
String s = new String(a);
 The object s will have the same sequence of 

characters as the entire array a ("ABC"), but 
is an independent copy

 Another String constructor uses a subrange 
of a character array instead
String s2 = new String(a,0,2);
 Given a as before, the new string object is 
"AB"
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An Array of Characters Is Not a String

An array of characters does have some 
things in common with String objects
 For example, an array of characters can 

be output using println
System.out.println(a);

 Given a as before, this would produce 
the output
ABC
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Arrays and References

Like class types, a variable of an array 
type holds a reference
 Arrays are objects
 A variable of an array type holds the 

address of where the array object is 
stored in memory

 Array types are (usually) considered to 
be class types
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Arrays are Objects

 An array can be viewed as a collection of indexed variables
 An array can also be viewed as a single item whose value 

is a collection of values of a base type
 An array variable names the array as a single item

double[] a;
 A new expression creates an array object and stores the 

object in memory
new double[10]

 An assignment statement places a reference to the 
memory address of an array object in the array variable
a = new double[10];
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Arrays Are Objects

 The previous steps can be combined into one 
statement
double[] a = new double[10];

 Note that the new expression that creates an array 
invokes a constructor that uses a nonstandard 
syntax

 Not also that as a result of the assignment 
statement above, a contains a single value:  a 
memory address or reference

 Since an array is a reference type, the behavior of 
arrays with respect to assignment (=), equality 
testing (==), and parameter passing are the same 
as that described for classes 
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Arrays with a Class Base Type

 The base type of an array can be a class type
Date[] holidayList = new Date[20];

 The above example creates 20 indexed 
variables of type Date
 It does not create 20 objects of the class Date
 Each of these indexed variables are 

automatically initialized to null
 Any attempt to reference any them at this 

point would result in a "null pointer exception" 
error message
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Arrays with a Class Base Type

 Like any other object, each of the indexed variables 
requires a separate invocation of a constructor using 
new (singly, or perhaps using a for loop) to create 
an object to reference
holidayList[0] = new Date();
            . . .
holidayList[19] = new Date();
                             OR
for (int i = 0; i < holidayList.length; i++)
  holidayList[i] = new Date();

 Each of the indexed variables can now be referenced 
since each holds the memory  address of a Date 
object
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Array Parameters

Both array indexed variables and entire 
arrays can be used as arguments to 
methods
 An indexed variable can be an argument 

to a method in exactly the same way 
that any variable of the array base type 
can be an argument
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Array Parameters

double n = 0.0;

double[] a = new double[10];//all elements

                 //are initialized to 0.0

int i = 3;

 Given myMethod which takes one argument of type 
double, then all of the following are legal:
myMethod(n);//n evaluates to 0.0

myMethod(a[3]);//a[3] evaluates to 0.0

myMethod(a[i]);//i evaluates to 3, 

               //a[3] evaluates to 0.0
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Array Parameters

 An argument to a method may be an entire 
array

 Array arguments behave like objects of a 
class
 Therefore, a method can change the values 

stored in the indexed variables of an array 
argument 

 A method with an array parameter must 
specify the base type of the array only

BaseType[]
 It does not specify the length of the array
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Array Parameters

 The following method, doubleElements, specifies 
an array of double as its single argument:

public class SampleClass
{
  public static void doubleElements(double[] a)
  {
    int i;
    for (i = 0; i < a.length; i++)
      a[i] = a[i]*2;
    . . .
  }
. . .
}
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Array Parameters

 Arrays of double may be defined as follows:
double[] a = new double[10];
double[] b = new double[30];

 Given the arrays above, the method doubleElements from 
class SampleClass can be invoked as follows:
SampleClass.doubleElements(a);
SampleClass.doubleElements(b);
 Note that no square brackets are used when an entire 

array is given as an argument
 Note also that a method that specifies an array for a 

parameter can take an array of any length as an argument
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Use of = and == with Arrays

 Because an array variable contains the memory 
address of the array it names, the assignment 
operator (=) only copies this memory address
 It does not copy the values of each indexed 

variable
 Using the assignment operator will make two 

array variables be different names for the same 
array
b = a;

 The memory address in a is now the same as 
the memory address in b:  They reference the 
same array
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Use of = and == with Arrays

 A for loop is usually used to make two 
different arrays have the same values in 
each indexed position:
int i;

for (i = 0; 

     (i < a.length)  && (i < b.length); i++)

  b[i] = a[i];

 Note that the above code will not make b an 
exact copy of a, unless a and b have the 
same length 
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Use of = and == with Arrays

 For the same reason, the equality operator 
(==) only tests two arrays to see if they are 
stored in the same location in the computer's 
memory
 It does not test two arrays to see if they 

contain the same values
(a == b)

 The result of the above boolean expression 
will be true if a and b share the same 
memory address (and, therefore, reference 
the same array), and false otherwise
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Use of = and == with Arrays

 In the same way that an equals 
method can be defined for a class, an  
equalsArray method can be defined 
for a type of array
 This is how two arrays must be tested to 

see if they contain the same elements
 The following method tests two integer 

arrays to see if they contain the same 
integer values 
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Use of = and == with Arrays

public static boolean equalsArray(int[] a, int[] b)
{
  if (a.length != b.length)  return false;
  else
  {
    int i = 0;
    while (i < a.length)
    {
      if (a[i] != b[i])
        return false;
      i++;
    }
  }
  return true;
}
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Arguments for the Method main

 The heading for the main method of a program 
has a parameter for an array  of String
 It is usually called args by convention

public static void main(String[] args)
 Note that since args is a parameter, it could be 

replaced by any other non-keyword identifier
 If a Java program is run without giving an 

argument to main, then a default empty array of 
strings is automatically provided
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Arguments for the Method main

 Here is a program that expects three string 
arguments:
public class SomeProgram
{
  public static void main(String[] args)
  {
    System.out.println(args[0] + " " +
                       args[2] + args[1]);
  }
}

 Note that if it needed numbers, it would have 
to convert them from strings first
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Arguments for the Method main

 If a program requires that the main method be 
provided an array of strings argument, each element 
must be provided from the command line when the 
program is run
java SomeProgram Hi ! there 
 This will set args[0] to "Hi", args[1] to "!", and 
args[2] to "there"

 It will also set args.length to 3
 When SomeProgram is run as shown, its output will 

be:
Hi there!
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Methods that Return an Array

 In Java, a method may also return an array
 The return type is specified in the same way 

that an array parameter is specified
public static int[] 

    incrementArray(int[] a, int increment)

{

  int[] temp = new int[a.length];

  int i;

  for (i = 0; i < a.length; i++)

    temp[i] = a[i] + increment;

  return temp;

}
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Partially Filled Arrays

 The exact size needed for an array is not always 
known when a program is written, or it may vary from 
one run of the program to another

 A common way to handle this is to declare the array 
to be of the largest size that the program could 
possibly need

 Care must then be taken to keep track of how much 
of the array is actually used
 An indexed variable that has not been given a 

meaningful value must never be referenced
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Partially Filled Arrays

 A variable can be used to keep track of how many 
elements are currently stored in an array 
 For example, given the variable count, the elements 

of the array someArray will range from positions 
someArray[0] through someArray[count – 1]

 Note that the variable count will be used to process 
the partially filled array instead of 
someArray.length

 Note also that this variable (count) must be an 
argument to any method that manipulates the 
partially filled array
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Accessor Methods Need Not Simply 
Return Instance Variables
 When an instance variable names an array, it 

is not always necessary to provide an 
accessor method that returns the contents of 
the entire array

 Instead, other accessor methods that return a 
variety of information about the array and its 
elements may be sufficient
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The "for each" Loop

 The standard Java libraries include a number of 
collection classes
 Classes whose objects store a collection of values

 Ordinary for loops cannot cycle through the 
elements in a collection object 
 Unlike array elements, collection object elements 

are not normally associated with indices
 However, there is a new kind of for loop, first 

available in Java 5.0, called a for-each loop or 
enhanced for loop

 This kind of loop can cycle through each element in 
a collection even though the elements are not 
indexed
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The "for each" Loop

 Although an ordinary for loop cannot cycle through the 
elements of a collection class, an enhanced for loop can cycle 
through the elements of an array

 The general syntax for a for-each loop statement used with an 
array is
for (ArrayBaseType VariableName : ArrayName)
Statement

 The above for-each line should be read as "for each 
VariableName in ArrayName do the following:"
 Note that VariableName must be declared within the for-

each loop, not before
 Note also that a colon (not a semicolon) is used after 
VariableName
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The "For-Each" Loop

 The for-each loop can make code cleaner and less error prone
 If the indexed variable in a for loop is used only as a way to 

cycle through the elements, then it would be preferable to 
change it to a for-each loop
 For example:

for (int i = 0; i < a.length; i++)
a[i] = 0.0;

 Can be changed to:
for (double element : a)
element = 0.0;

 Note that the for-each syntax is  simpler and quite easy to 
understand
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Methods with a Variable Number of 
Parameters
 Starting with Java 5.0, methods can be defined that 

take any number of arguments
 Essentially, it is implemented by taking in an array as 

argument, but the job of placing values in the array is 
done automatically
 The values for the array are given as arguments 
 Java automatically creates an array and places the 

arguments in the array
 Note that arguments corresponding to regular 

parameters are handled in the usual way
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Methods with a Variable Number of 
Parameters
 Such a method has as the last item on its parameter list a 

vararg specification of the form:
Type... ArrayName

 Note the three dots called an ellipsis that must be included 
as part of the vararg specification syntax

 Following the arguments for regular parameters are any 
number of arguments of the type given in the vararg 
specification
 These arguments are automatically placed in an array
 This array can be used in the method definition
 Note that a vararg specification allows any number of 

arguments, including zero
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Method with a Variable Number of 
Parameters
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Privacy Leaks with Array Instance 
Variables
 If an accessor method does return the 

contents of an array, special care must be 
taken
 Just as when an accessor returns a reference 

to any private object
public double[] getArray()
{
  return anArray;//BAD!
}
 The example above will result in a privacy leak
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Privacy Leaks with Array Instance 
Variables
 The previous accessor method would simply return a 

reference to the array anArray itself
 Instead, an accessor method should return a reference to a 

deep copy of the private array object
 Below, both a and count are instance variables of the 

class containing the getArray method

public double[] getArray()
{
  double[] temp = new double[count];
  for (int i = 0; i < count; i++)
    temp[i] = a[i];
  return temp
}
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Privacy Leaks with Array Instance 
Variables
 If a private instance variable is an array that has a 

class as its base type, then copies must be made of 
each class object in the array when the array is 
copied:

public ClassType[] getArray()
{
  ClassType[] temp = new ClassType[count];
  for (int i = 0; i < count; i++)
    temp[i] = new ClassType(someArray[i]);
  return temp;
}
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Multidimensional Arrays

 It is sometimes useful to have an array with more 
than one index

 Multidimensional arrays are declared and created in 
basically the same way as one-dimensional arrays
 You simply use as many square brackets as there are 

indices
 Each index must be enclosed in its own brackets

double[][]table = new double[100][10];
int[][][] figure = new int[10][20][30];
Person[][] = new Person[10][100];
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Multidimensional Arrays

 Multidimensional arrays may have any 
number of indices, but perhaps the most 
common number is two
 Two-dimensional array can be visualized as a 

two-dimensional display with the first index 
giving the row, and the second index giving 
the column
char[][] a = new char[5][12];

 Note that, like a one-dimensional array, each 
element of a multidimensional array is just a 
variable of the base type (in this case, char)
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Multidimensional Arrays

 In Java, a two-dimensional array, such as a, 
is actually an array of arrays
 The array a contains a reference to a one-

dimensional array of size 5 with a base type of 
char[]

 Each indexed variable (a[0], a[1], etc.) 
contains a reference to a one-dimensional 
array of size 12, also with a base type of 
char[]

 A three-dimensional array is an array of 
arrays of arrays, and so forth for higher 
dimensions
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Two-Dimensional Array as an Array of 
Arrays (1/2)
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Two-Dimensional Array as an Array of 
Arrays (2/2)



 
Java-05- 54

Using the length Instance Variable

char[][] page = new char[30][100];
 The instance variable length does not give the total 

number of indexed variables in a two-dimensional array
 Because a two-dimensional array is actually an array 

of arrays, the instance variable length gives the 
number of first indices (or "rows") in the array

  page.length is equal to 30
 For the same reason, the number of second indices 

(or "columns") for a given "row" is given by 
referencing length for that "row" variable
  page[0].length is equal to 100
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Using the length Instance Variable

 The following program demonstrates how a nested 
for loop can be used to process a two-
dimensional array
 Note how each length instance variable is used

int row, column;

for (row = 0; row < page.length; row++)

  for (column = 0; column < page[row].length;

                                       column++)

    page[row][column] = 'Z';
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Ragged Arrays

 Each row in a two-dimensional array need not 
have the same number of elements
 Different rows can have different numbers of 

columns
 An array that has a different number of 

elements per row it is called a ragged array
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Ragged Arrays

double[][] a = new double[3][5];
 The above line is equivalent to the following:

double [][] a; 

a = new double[3][]; //Note below

a[0] = new double[5];

a[1] = new double[5];

a[2] = new double[5];
 Note that the second line makes a the name of an array with 

room for 3 entries, each of which can be an array of 
doubles that can be of any length

 The next 3 lines each create an array of doubles of size 5
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Ragged Arrays

double [][] a; 

a = new double[3][];

 Since the above line does not specify the size of  
a[0], a[1], or a[2], each could be made a 
different size instead:
a[0] = new double[5];

a[1] = new double[10];

a[2] = new double[4];
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Multidimensional Array Parameters 
and Returned Values
 Methods may have multidimensional array 

parameters
 They are specified in a way similar to  one-dimensional 

arrays
 They use the same number of sets of square brackets 

as they have dimensions

public void myMethod(int[][] a)

{ . . . }
 The parameter a is a two-dimensional array
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Multidimensional Array Parameters 
and Returned Values
 Methods may have a multidimensional array 

type as their return type
 They use the same kind of type specification 

as for a multidimensional array parameter
public double[][] aMethod()
{ . . . }

 The method aMethod returns an array of 
double
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Enumerated Types

 Starting with version 5.0, Java permits enumerated 
types
 An enumerated type is a type in which all the 

values are given in a (typically) short list
 The definition of an enumerated type is normally 

placed outside of all methods in the same place that 
named constants are defined:
enum TypeName {VALUE_1, VALUE_2, …, VALUE_N};
 Note that a value of an enumerated type is a kind 

of named constant and so, by convention, is 
spelled with all uppercase letters

 As with any other type, variables can be declared 
of an enumerated type
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Enumerated Types Example

 Given the following definition of an 
enumerated type:
enum WorkDay {MONDAY, TUESDAY, WEDNESDAY, 
THURSDAY, FRIDAY};

 A variable of this type can be declared as 
follows:
WorkDay meetingDay, availableDay;

 The value of a variable of this type can be set 
to one of the values listed in the definition of 
the type, or else to the special value null:
meetingDay = WorkDay.THURSDAY;
availableDay = null;
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Enumerated Types Usage

 Just like other types, variable of this type can be 
declared and initialized at the same time:
WorkDay meetingDay = WorkDay.THURSDAY;
 Note that the value of an enumerated type must 

be prefaced with the name of the type
 The value of a variable or constant of an enumerated 

type can be output using println
 The code:

System.out.println(meetingDay);
 Will produce the following output:

THURSDAY
 As will the code:

System.out.println(WorkDay.THURSDAY);
 Note that the type name  WorkDay is not output
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Enumerated Types Usage

 Although they may look like String values, values of 
an enumerated type are not String values

 However, they can be used for tasks which could be 
done by String values and, in some cases, work 
better
 Using a String variable allows the possibility of 

setting the variable to a nonsense value
 Using an enumerated type variable constrains the 

possible values for that variable
 An error message will result if an attempt is made 

to give an enumerated type variable a value that is 
not defined for its type  
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Enumerated Types Usage

 Two variables or constants of an enumerated type 
can be compared using the equals method or the 
== operator

 However, the == operator has a nicer syntax
if (meetingDay == availableDay)
System.out.println("Meeting will be on 
schedule.");

if (meetingDay == WorkDay.THURSDAY)
System.out.println("Long weekend!);
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An Enumerated Type
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Some Methods Included with Every 
Enumerated Type (1/3)
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Some Methods Included with Every 
Enumerated Type (2/3)
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Some Methods Included with Every 
Enumerated Type (3/3)
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The values Method

 To get the full potential from an enumerated type, it is 
often necessary to cycle through all the values of the 
type

 Every enumerated type is automatically provided with 
the static method values() which provides this 
ability
 It returns an array whose elements are the values 

of the enumerated type given in the order in which 
the elements are listed in the definition of the 
enumerated type

 The base type of the array that is returned is the 
enumerated type 
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The Method values (1/2)
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The Method values (2/2)
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Enumerated Types in switch 
Statements
 Enumerated types can be used to control a switch 

statement
 The switch control expression uses a variable of 

an enumerated type
 Case labels are the unqualified values of the same 

enumerated type
 The enumerated type control variable is set by using 

the static method valueOf to convert an input string 
to a value of the enumerated type
 The input string must contain all upper case 

letters, or be converted to all upper case letters 
using the toUpperCase method
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Enumerated Type in a switch 
Statement (1/3)
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Enumerated Type in a switch 
Statement (2/3)
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Enumerated Type in a switch 
Statement (3/3)
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