
Adapted from Absolute Java, Rose Williams, Binghamton University

Module 5

Arrays

Java-05- 2

Introduction to Arrays

 An array is a data structure used to process a
collection of data that is all of the same type
 An array behaves like a numbered list of

variables with a uniform naming mechanism
 It has a part that does not change: the name

of the array
 It has a part that can change: an integer in

square brackets
 For example, given four scores:

chapter[0], chapter[1], chapter[2], chapter[3]

Java-05- 3

Creating and Accessing Arrays

 An array that behaves like this collection of variables,
all of type Chapter, can be created using one
statement as follows:
Chapter[] chapter = new Chapter[4];

 Or using two statements:
Chapter[] chapter;
chapter = new Chapter[4];
 The first statement declares the variable chapter

to be of the array type Chapter[]
 The second statement creates an array with four

numbered variables of type Chapter and makes
the variable chapter a name for the array

Java-05- 4

Creating and Accessing Arrays

 The individual variables that together make
up the array are called indexed variables
 They can also be called subscripted variables

or elements of the array
 The number in square brackets is called an

index or subscript
 In Java, indices must be numbered starting

with 0, and nothing else
chapter[0], chapter[1], chapter[2], chapter[3]

Java-05- 5

Creating and Accessing Arrays

 The number of indexed variables in an array
is called the length or size of the array

 When an array is created, the length of the
array is given in square brackets after the
array type

 The indexed variables are then numbered
starting with 0, and ending with the integer
that is one less than the length of the array
chapter[0], chapter[1], chapter[2], chapter[3]

Java-05- 6

Creating and Accessing Arrays

chapter = new Chapter[4];
 A variable may be used in place of the integer (i.e., in

place of the integer 4 above)
 The value of this variable can then be read

from the keyboard
 This enables the size of the array to be

determined when the program is run
chapter = new Chapter[count];

 An array can have indexed variables of any type,
including any class type

 All of the indexed variables in a single array must be
of the same type, called the base type of the array

Java-05- 7

Declaring and Creating an Array

 An array is declared and created in almost the same
way that objects are declared and created:

BaseType[] ArrayName = new BaseType[size];

 The size may be given as an expression that
evaluates to a nonnegative integer, for example, an
int variable

char[] line = new char[80];

double[] reading = new double[count];

Person[] specimen = new Person[100];

Java-05- 8

Referring to Arrays and Array
Elements
 Each array element can be used just like any other

single variable by referring to it using an indexed
expression: score[0]

 The array itself (i.e., the entire collection of indexed
variables) can be referred to using the array name
(without any square brackets): score

 An array index can be computed when a program is
run
 It may be represented by a variable:
score[index]

 It may be represented by an expression that
evaluates to a suitable integer: score[next + 1]

Java-05- 9

Using the score Array in a Program

 The for loop is ideally suited for performing array
manipulations:
for (index = 0; index < 5; index++)

 System.out.println(score[index] +

 " differs from max by " +

 (max-score[index]));

Java-05- 10

Three Ways to Use Square Brackets
[] with an Array Name
 Square brackets can be used to create a type

name:
double[] score;

 Square brackets can be used with an integer
value as part of the special syntax Java uses
to create a new array:
score = new double[5];

 Square brackets can be used to name an
indexed variable of an array:
max = score[0];

Java-05- 11

The length Instance Variable

 An array is considered to be an object
 Since other objects can have instance variables, so can

arrays
 Every array has exactly one instance variable named
length
 When an array is created, the instance variable
length is automatically set equal to its size

 The value of length cannot be changed (other than
by creating an entirely new array with new)
double[] score = new double[5];

 Given score above, score.length has a value of
5

Java-05- 12

Array Index Out of Bounds

 Array indices always start with 0, and always end with the
integer that is one less than the size of the array
 The most common programming error made when using

arrays is attempting to use a nonexistent array index
 When an index expression evaluates to some value other

than those allowed by the array declaration, the index is said
to be out of bounds
 An out of bounds index will cause a program to terminate

with a run-time error message
 Array indices get out of bounds most commonly at the

first or last iteration of a loop that processes the array:
Be sure to test for this!

Java-05- 13

Initializing Arrays

 An array can be initialized when it is declared
 Values for the indexed variables are enclosed

in braces, and separated by commas
 The array size is automatically set to the

number of values in the braces

int[] age = {2, 12, 1};
 Given age above, age.length has a value

of 3

Java-05- 14

Initializing Arrays

 Another way of initializing an array is by using a for
loop
double[] reading = new double[100];
int index;
for (index = 0;
 index < reading.length; index++)
 reading[index] = 42.0;

 If the elements of an array are not initialized explicitly,
they will automatically be initialized to the default
value for their base type

Java-05- 15

An Array of Characters Is Not a String

 An array of characters is conceptually a list
of characters, and so is conceptually like a
string

 However, an array of characters is not an
object of the class String
char[] a = {'A', 'B', 'C'};
String s = a; //Illegal!

 An array of characters can be converted to
an object of type String, however

Java-05- 16

An Array of Characters Is Not a String

 The class String has a constructor that has
a single parameter of type char[]
String s = new String(a);
 The object s will have the same sequence of

characters as the entire array a ("ABC"), but
is an independent copy

 Another String constructor uses a subrange
of a character array instead
String s2 = new String(a,0,2);
 Given a as before, the new string object is
"AB"

Java-05- 17

An Array of Characters Is Not a String

An array of characters does have some
things in common with String objects
 For example, an array of characters can

be output using println
System.out.println(a);

 Given a as before, this would produce
the output
ABC

Java-05- 18

Arrays and References

Like class types, a variable of an array
type holds a reference
 Arrays are objects
 A variable of an array type holds the

address of where the array object is
stored in memory

 Array types are (usually) considered to
be class types

Java-05- 19

Arrays are Objects

 An array can be viewed as a collection of indexed variables
 An array can also be viewed as a single item whose value

is a collection of values of a base type
 An array variable names the array as a single item

double[] a;
 A new expression creates an array object and stores the

object in memory
new double[10]

 An assignment statement places a reference to the
memory address of an array object in the array variable
a = new double[10];

Java-05- 20

Arrays Are Objects

 The previous steps can be combined into one
statement
double[] a = new double[10];

 Note that the new expression that creates an array
invokes a constructor that uses a nonstandard
syntax

 Not also that as a result of the assignment
statement above, a contains a single value: a
memory address or reference

 Since an array is a reference type, the behavior of
arrays with respect to assignment (=), equality
testing (==), and parameter passing are the same
as that described for classes

Java-05- 21

Arrays with a Class Base Type

 The base type of an array can be a class type
Date[] holidayList = new Date[20];

 The above example creates 20 indexed
variables of type Date
 It does not create 20 objects of the class Date
 Each of these indexed variables are

automatically initialized to null
 Any attempt to reference any them at this

point would result in a "null pointer exception"
error message

Java-05- 22

Arrays with a Class Base Type

 Like any other object, each of the indexed variables
requires a separate invocation of a constructor using
new (singly, or perhaps using a for loop) to create
an object to reference
holidayList[0] = new Date();
 . . .
holidayList[19] = new Date();
 OR
for (int i = 0; i < holidayList.length; i++)
 holidayList[i] = new Date();

 Each of the indexed variables can now be referenced
since each holds the memory address of a Date
object

Java-05- 23

Array Parameters

Both array indexed variables and entire
arrays can be used as arguments to
methods
 An indexed variable can be an argument

to a method in exactly the same way
that any variable of the array base type
can be an argument

Java-05- 24

Array Parameters

double n = 0.0;

double[] a = new double[10];//all elements

 //are initialized to 0.0

int i = 3;

 Given myMethod which takes one argument of type
double, then all of the following are legal:
myMethod(n);//n evaluates to 0.0

myMethod(a[3]);//a[3] evaluates to 0.0

myMethod(a[i]);//i evaluates to 3,

 //a[3] evaluates to 0.0

Java-05- 25

Array Parameters

 An argument to a method may be an entire
array

 Array arguments behave like objects of a
class
 Therefore, a method can change the values

stored in the indexed variables of an array
argument

 A method with an array parameter must
specify the base type of the array only

BaseType[]
 It does not specify the length of the array

Java-05- 26

Array Parameters

 The following method, doubleElements, specifies
an array of double as its single argument:

public class SampleClass
{
 public static void doubleElements(double[] a)
 {
 int i;
 for (i = 0; i < a.length; i++)
 a[i] = a[i]*2;
 . . .
 }
. . .
}

Java-05- 27

Array Parameters

 Arrays of double may be defined as follows:
double[] a = new double[10];
double[] b = new double[30];

 Given the arrays above, the method doubleElements from
class SampleClass can be invoked as follows:
SampleClass.doubleElements(a);
SampleClass.doubleElements(b);
 Note that no square brackets are used when an entire

array is given as an argument
 Note also that a method that specifies an array for a

parameter can take an array of any length as an argument

Java-05- 28

Use of = and == with Arrays

 Because an array variable contains the memory
address of the array it names, the assignment
operator (=) only copies this memory address
 It does not copy the values of each indexed

variable
 Using the assignment operator will make two

array variables be different names for the same
array
b = a;

 The memory address in a is now the same as
the memory address in b: They reference the
same array

Java-05- 29

Use of = and == with Arrays

 A for loop is usually used to make two
different arrays have the same values in
each indexed position:
int i;

for (i = 0;

 (i < a.length) && (i < b.length); i++)

 b[i] = a[i];

 Note that the above code will not make b an
exact copy of a, unless a and b have the
same length

Java-05- 30

Use of = and == with Arrays

 For the same reason, the equality operator
(==) only tests two arrays to see if they are
stored in the same location in the computer's
memory
 It does not test two arrays to see if they

contain the same values
(a == b)

 The result of the above boolean expression
will be true if a and b share the same
memory address (and, therefore, reference
the same array), and false otherwise

Java-05- 31

Use of = and == with Arrays

 In the same way that an equals
method can be defined for a class, an
equalsArray method can be defined
for a type of array
 This is how two arrays must be tested to

see if they contain the same elements
 The following method tests two integer

arrays to see if they contain the same
integer values

Java-05- 32

Use of = and == with Arrays

public static boolean equalsArray(int[] a, int[] b)
{
 if (a.length != b.length) return false;
 else
 {
 int i = 0;
 while (i < a.length)
 {
 if (a[i] != b[i])
 return false;
 i++;
 }
 }
 return true;
}

Java-05- 33

Arguments for the Method main

 The heading for the main method of a program
has a parameter for an array of String
 It is usually called args by convention

public static void main(String[] args)
 Note that since args is a parameter, it could be

replaced by any other non-keyword identifier
 If a Java program is run without giving an

argument to main, then a default empty array of
strings is automatically provided

Java-05- 34

Arguments for the Method main

 Here is a program that expects three string
arguments:
public class SomeProgram
{
 public static void main(String[] args)
 {
 System.out.println(args[0] + " " +
 args[2] + args[1]);
 }
}

 Note that if it needed numbers, it would have
to convert them from strings first

Java-05- 35

Arguments for the Method main

 If a program requires that the main method be
provided an array of strings argument, each element
must be provided from the command line when the
program is run
java SomeProgram Hi ! there
 This will set args[0] to "Hi", args[1] to "!", and
args[2] to "there"

 It will also set args.length to 3
 When SomeProgram is run as shown, its output will

be:
Hi there!

Java-05- 36

Methods that Return an Array

 In Java, a method may also return an array
 The return type is specified in the same way

that an array parameter is specified
public static int[]

 incrementArray(int[] a, int increment)

{

 int[] temp = new int[a.length];

 int i;

 for (i = 0; i < a.length; i++)

 temp[i] = a[i] + increment;

 return temp;

}

Java-05- 37

Partially Filled Arrays

 The exact size needed for an array is not always
known when a program is written, or it may vary from
one run of the program to another

 A common way to handle this is to declare the array
to be of the largest size that the program could
possibly need

 Care must then be taken to keep track of how much
of the array is actually used
 An indexed variable that has not been given a

meaningful value must never be referenced

Java-05- 38

Partially Filled Arrays

 A variable can be used to keep track of how many
elements are currently stored in an array
 For example, given the variable count, the elements

of the array someArray will range from positions
someArray[0] through someArray[count – 1]

 Note that the variable count will be used to process
the partially filled array instead of
someArray.length

 Note also that this variable (count) must be an
argument to any method that manipulates the
partially filled array

Java-05- 39

Accessor Methods Need Not Simply
Return Instance Variables
 When an instance variable names an array, it

is not always necessary to provide an
accessor method that returns the contents of
the entire array

 Instead, other accessor methods that return a
variety of information about the array and its
elements may be sufficient

Java-05- 40

The "for each" Loop

 The standard Java libraries include a number of
collection classes
 Classes whose objects store a collection of values

 Ordinary for loops cannot cycle through the
elements in a collection object
 Unlike array elements, collection object elements

are not normally associated with indices
 However, there is a new kind of for loop, first

available in Java 5.0, called a for-each loop or
enhanced for loop

 This kind of loop can cycle through each element in
a collection even though the elements are not
indexed

Java-05- 41

The "for each" Loop

 Although an ordinary for loop cannot cycle through the
elements of a collection class, an enhanced for loop can cycle
through the elements of an array

 The general syntax for a for-each loop statement used with an
array is
for (ArrayBaseType VariableName : ArrayName)
Statement

 The above for-each line should be read as "for each
VariableName in ArrayName do the following:"
 Note that VariableName must be declared within the for-

each loop, not before
 Note also that a colon (not a semicolon) is used after
VariableName

Java-05- 42

The "For-Each" Loop

 The for-each loop can make code cleaner and less error prone
 If the indexed variable in a for loop is used only as a way to

cycle through the elements, then it would be preferable to
change it to a for-each loop
 For example:

for (int i = 0; i < a.length; i++)
a[i] = 0.0;

 Can be changed to:
for (double element : a)
element = 0.0;

 Note that the for-each syntax is simpler and quite easy to
understand

Java-05- 43

Methods with a Variable Number of
Parameters
 Starting with Java 5.0, methods can be defined that

take any number of arguments
 Essentially, it is implemented by taking in an array as

argument, but the job of placing values in the array is
done automatically
 The values for the array are given as arguments
 Java automatically creates an array and places the

arguments in the array
 Note that arguments corresponding to regular

parameters are handled in the usual way

Java-05- 44

Methods with a Variable Number of
Parameters
 Such a method has as the last item on its parameter list a

vararg specification of the form:
Type... ArrayName

 Note the three dots called an ellipsis that must be included
as part of the vararg specification syntax

 Following the arguments for regular parameters are any
number of arguments of the type given in the vararg
specification
 These arguments are automatically placed in an array
 This array can be used in the method definition
 Note that a vararg specification allows any number of

arguments, including zero

Java-05- 45

Method with a Variable Number of
Parameters

Java-05- 46

Privacy Leaks with Array Instance
Variables
 If an accessor method does return the

contents of an array, special care must be
taken
 Just as when an accessor returns a reference

to any private object
public double[] getArray()
{
 return anArray;//BAD!
}
 The example above will result in a privacy leak

Java-05- 47

Privacy Leaks with Array Instance
Variables
 The previous accessor method would simply return a

reference to the array anArray itself
 Instead, an accessor method should return a reference to a

deep copy of the private array object
 Below, both a and count are instance variables of the

class containing the getArray method

public double[] getArray()
{
 double[] temp = new double[count];
 for (int i = 0; i < count; i++)
 temp[i] = a[i];
 return temp
}

Java-05- 48

Privacy Leaks with Array Instance
Variables
 If a private instance variable is an array that has a

class as its base type, then copies must be made of
each class object in the array when the array is
copied:

public ClassType[] getArray()
{
 ClassType[] temp = new ClassType[count];
 for (int i = 0; i < count; i++)
 temp[i] = new ClassType(someArray[i]);
 return temp;
}

Java-05- 49

Multidimensional Arrays

 It is sometimes useful to have an array with more
than one index

 Multidimensional arrays are declared and created in
basically the same way as one-dimensional arrays
 You simply use as many square brackets as there are

indices
 Each index must be enclosed in its own brackets

double[][]table = new double[100][10];
int[][][] figure = new int[10][20][30];
Person[][] = new Person[10][100];

Java-05- 50

Multidimensional Arrays

 Multidimensional arrays may have any
number of indices, but perhaps the most
common number is two
 Two-dimensional array can be visualized as a

two-dimensional display with the first index
giving the row, and the second index giving
the column
char[][] a = new char[5][12];

 Note that, like a one-dimensional array, each
element of a multidimensional array is just a
variable of the base type (in this case, char)

Java-05- 51

Multidimensional Arrays

 In Java, a two-dimensional array, such as a,
is actually an array of arrays
 The array a contains a reference to a one-

dimensional array of size 5 with a base type of
char[]

 Each indexed variable (a[0], a[1], etc.)
contains a reference to a one-dimensional
array of size 12, also with a base type of
char[]

 A three-dimensional array is an array of
arrays of arrays, and so forth for higher
dimensions

Java-05- 52

Two-Dimensional Array as an Array of
Arrays (1/2)

Java-05- 53

Two-Dimensional Array as an Array of
Arrays (2/2)

Java-05- 54

Using the length Instance Variable

char[][] page = new char[30][100];
 The instance variable length does not give the total

number of indexed variables in a two-dimensional array
 Because a two-dimensional array is actually an array

of arrays, the instance variable length gives the
number of first indices (or "rows") in the array

 page.length is equal to 30
 For the same reason, the number of second indices

(or "columns") for a given "row" is given by
referencing length for that "row" variable
 page[0].length is equal to 100

Java-05- 55

Using the length Instance Variable

 The following program demonstrates how a nested
for loop can be used to process a two-
dimensional array
 Note how each length instance variable is used

int row, column;

for (row = 0; row < page.length; row++)

 for (column = 0; column < page[row].length;

 column++)

 page[row][column] = 'Z';

Java-05- 56

Ragged Arrays

 Each row in a two-dimensional array need not
have the same number of elements
 Different rows can have different numbers of

columns
 An array that has a different number of

elements per row it is called a ragged array

Java-05- 57

Ragged Arrays

double[][] a = new double[3][5];
 The above line is equivalent to the following:

double [][] a;

a = new double[3][]; //Note below

a[0] = new double[5];

a[1] = new double[5];

a[2] = new double[5];
 Note that the second line makes a the name of an array with

room for 3 entries, each of which can be an array of
doubles that can be of any length

 The next 3 lines each create an array of doubles of size 5

Java-05- 58

Ragged Arrays

double [][] a;

a = new double[3][];

 Since the above line does not specify the size of
a[0], a[1], or a[2], each could be made a
different size instead:
a[0] = new double[5];

a[1] = new double[10];

a[2] = new double[4];

Java-05- 59

Multidimensional Array Parameters
and Returned Values
 Methods may have multidimensional array

parameters
 They are specified in a way similar to one-dimensional

arrays
 They use the same number of sets of square brackets

as they have dimensions

public void myMethod(int[][] a)

{ . . . }
 The parameter a is a two-dimensional array

Java-05- 60

Multidimensional Array Parameters
and Returned Values
 Methods may have a multidimensional array

type as their return type
 They use the same kind of type specification

as for a multidimensional array parameter
public double[][] aMethod()
{ . . . }

 The method aMethod returns an array of
double

Java-05- 61

Enumerated Types

 Starting with version 5.0, Java permits enumerated
types
 An enumerated type is a type in which all the

values are given in a (typically) short list
 The definition of an enumerated type is normally

placed outside of all methods in the same place that
named constants are defined:
enum TypeName {VALUE_1, VALUE_2, …, VALUE_N};
 Note that a value of an enumerated type is a kind

of named constant and so, by convention, is
spelled with all uppercase letters

 As with any other type, variables can be declared
of an enumerated type

Java-05- 62

Enumerated Types Example

 Given the following definition of an
enumerated type:
enum WorkDay {MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY};

 A variable of this type can be declared as
follows:
WorkDay meetingDay, availableDay;

 The value of a variable of this type can be set
to one of the values listed in the definition of
the type, or else to the special value null:
meetingDay = WorkDay.THURSDAY;
availableDay = null;

Java-05- 63

Enumerated Types Usage

 Just like other types, variable of this type can be
declared and initialized at the same time:
WorkDay meetingDay = WorkDay.THURSDAY;
 Note that the value of an enumerated type must

be prefaced with the name of the type
 The value of a variable or constant of an enumerated

type can be output using println
 The code:

System.out.println(meetingDay);
 Will produce the following output:

THURSDAY
 As will the code:

System.out.println(WorkDay.THURSDAY);
 Note that the type name WorkDay is not output

Java-05- 64

Enumerated Types Usage

 Although they may look like String values, values of
an enumerated type are not String values

 However, they can be used for tasks which could be
done by String values and, in some cases, work
better
 Using a String variable allows the possibility of

setting the variable to a nonsense value
 Using an enumerated type variable constrains the

possible values for that variable
 An error message will result if an attempt is made

to give an enumerated type variable a value that is
not defined for its type

Java-05- 65

Enumerated Types Usage

 Two variables or constants of an enumerated type
can be compared using the equals method or the
== operator

 However, the == operator has a nicer syntax
if (meetingDay == availableDay)
System.out.println("Meeting will be on
schedule.");

if (meetingDay == WorkDay.THURSDAY)
System.out.println("Long weekend!);

Java-05- 66

An Enumerated Type

Java-05- 67

Some Methods Included with Every
Enumerated Type (1/3)

Java-05- 68

Some Methods Included with Every
Enumerated Type (2/3)

Java-05- 69

Some Methods Included with Every
Enumerated Type (3/3)

Java-05- 70

The values Method

 To get the full potential from an enumerated type, it is
often necessary to cycle through all the values of the
type

 Every enumerated type is automatically provided with
the static method values() which provides this
ability
 It returns an array whose elements are the values

of the enumerated type given in the order in which
the elements are listed in the definition of the
enumerated type

 The base type of the array that is returned is the
enumerated type

Java-05- 71

The Method values (1/2)

Java-05- 72

The Method values (2/2)

Java-05- 73

Enumerated Types in switch
Statements
 Enumerated types can be used to control a switch

statement
 The switch control expression uses a variable of

an enumerated type
 Case labels are the unqualified values of the same

enumerated type
 The enumerated type control variable is set by using

the static method valueOf to convert an input string
to a value of the enumerated type
 The input string must contain all upper case

letters, or be converted to all upper case letters
using the toUpperCase method

Java-05- 74

Enumerated Type in a switch
Statement (1/3)

Java-05- 75

Enumerated Type in a switch
Statement (2/3)

Java-05- 76

Enumerated Type in a switch
Statement (3/3)

	Module 5
	Introduction to Arrays
	Creating and Accessing Arrays
	Slide 4
	Slide 5
	Slide 6
	Declaring and Creating an Array
	Referring to Arrays and Array Elements
	Using the score Array in a Program
	Three Ways to Use Square Brackets [] with an Array Name
	The length Instance Variable
	Array Index Out of Bounds
	Initializing Arrays
	Slide 14
	An Array of Characters Is Not a String
	Slide 16
	Slide 17
	Arrays and References
	Arrays are Objects
	Arrays Are Objects
	Arrays with a Class Base Type
	Slide 22
	Array Parameters
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Use of = and == with Arrays
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Arguments for the Method main
	Slide 34
	Slide 35
	Methods that Return an Array
	Partially Filled Arrays
	Slide 38
	Accessor Methods Need Not Simply Return Instance Variables
	The "for each" Loop
	Slide 41
	The "For-Each" Loop
	Methods with a Variable Number of Parameters
	Slide 44
	Method with a Variable Number of Parameters
	Privacy Leaks with Array Instance Variables
	Slide 47
	Slide 48
	Multidimensional Arrays
	Slide 50
	Slide 51
	Two-Dimensional Array as an Array of Arrays (1/2)
	Two-Dimensional Array as an Array of Arrays (2/2)
	Using the length Instance Variable
	Slide 55
	Ragged Arrays
	Slide 57
	Slide 58
	Multidimensional Array Parameters and Returned Values
	Slide 60
	Enumerated Types
	Enumerated Types Example
	Enumerated Types Usage
	Slide 64
	Slide 65
	An Enumerated Type
	Some Methods Included with Every Enumerated Type (1/3)
	Some Methods Included with Every Enumerated Type (2/3)
	Some Methods Included with Every Enumerated Type (3/3)
	The values Method
	The Method values (1/2)
	The Method values (2/2)
	Enumerated Types in switch Statements
	Enumerated Type in a switch Statement (1/3)
	Enumerated Type in a switch Statement (2/3)
	Enumerated Type in a switch Statement (3/3)

