
Java-02

Module 2

Basic Concepts

Java-02- 2

Object-oriented Programming

Classes are the most important language
feature that make object-oriented
programming (OOP) possible

Programming in Java consists of defining a
number of classes
 Every program is a class
 All helping software consists of classes
 All programmer-defined types are classes

Classes are central to Java

Java-02- 3

Classes, Objects, and Methods

 A class is the name for a type whose values are
objects

 Objects are entities that store data and take
actions
 Objects of the String class store data consisting

of strings of characters
 The actions that an object can take are called

methods
 Methods can return a value of a single type and/or

perform an action
 All objects within a class have the same methods,

but each can have different data values

Java-02- 4

Classes, Objects, and Methods

 Invoking or calling a method: a method is
called into action by writing the name of the
calling object, followed by a dot, followed by
the method name, followed by parentheses
 This is sometimes referred to as sending a

message to the object
 The parentheses contain the information (if

any) needed by the method
 This information is called an argument (or

arguments)

Java-02- 5

System.out.println

 Java programs work by having things called
objects perform actions
 System.out: an object used for sending

output to the screen

 The actions performed by an object are called
methods
 println: the method or action that the
System.out object performs

Java-02- 6

A Sample Java Application
Program

Java-02- 7

System.out.println

 Invoking or calling a method: When an object
performs an action using a method
 Also called sending a message to the object
 Method invocation syntax (in order): an

object, a dot (period), the method name, and a
pair of parentheses

 Arguments: Zero or more pieces of
information needed by the method that are
placed inside the parentheses

System.out.println("This is an argument");

Java-02- 8

A Class Is a Type

 A class is a special kind of programmer-
defined type, and variables can be declared
of a class type

 A value of a class type is called an object or
an instance of the class
 If A is a class, then the phrases “x is of type

A," “x is an object of the class A," and “x is an
instance of the class A" mean the same thing

 A class determines the types of data that an
object can contain, as well as the actions it
can perform

Java-02- 9

Primitive Type Values vs. Class Type
Values
 A primitive type value is a single piece of data
 A class type value or object can have multiple

pieces of data, as well as actions called
methods
 All objects of a class have the same methods
 All objects of a class have the same pieces of

data (i.e., name, type, and number)
 For a given object, each piece of data can

hold a different value

Java-02- 10

Primitive Types

Java-02- 11

The Contents of a Class Definition

 A class definition specifies the data items and
methods that all of its objects will have

 These data items and methods are
sometimes called members of the object

 Data items are called fields or instance
variables

 Instance variable declarations and method
definitions can be placed in any order within
the class definition

Java-02- 12

Instantiation of an Object

 An object of a class is named or declared by a
variable of the class type:
 ClassName classVar;

 The new operator must then be used to create the
object and associate it with its variable name:
 classVar = new ClassName();

 These can be combined as follows:
 ClassName classVar = new ClassName();

Java-02- 13

Constructors

 A constructor is a special kind of method that
is designed to initialize the instance variables
for an object:
Public ClassName(anyParameters){code}

 A constructor must have the same name as
the class

 A constructor has no type returned, not even
void

 Constructors are typically overloaded

Java-02- 14

Constructors

 A constructor is called when an object of the class is created
using new
ClassName objectName = new ClassName(anyArgs);
 The name of the constructor and its parenthesized list of

arguments (if any) must follow the new operator
 This is the only valid way to invoke a constructor: a

constructor cannot be invoked like an ordinary method
 If a constructor is invoked again (using new), the first object is

discarded and an entirely new object is created
 If you need to change the values of instance variables of

the object, use mutator methods instead

Java-02- 15

You Can Invoke Another Method in a
Constructor
 The first action taken by a constructor is to create an

object with instance variables
 Therefore, it is legal to invoke another method within

the definition of a constructor, since it has the newly
created object as its calling object
 For example, mutator methods can be used to set the

values of the instance variables
 It is even possible for one constructor to invoke

another

Java-02- 16

Include a No-Argument Constructor

 If you do not include any constructors in your
class, Java will automatically create a default or
no-argument constructor that takes no arguments,
performs no initializations, but allows the object to
be created

 If you include even one constructor in your class,
Java will not provide this default constructor

 If you include any constructors in your class, be
sure to provide your own no-argument constructor
as well

Java-02- 17

Instance Variables and Methods

 Instance variables can be defined as in the
following two examples
 Note the public modifier (for now):
 public String instanceVar1;
 public int instanceVar2;

 In order to refer to a particular instance
variable, preface it with its object name as
follows:
objectName.instanceVar1
objectName.instanceVar2

Java-02- 18

Default Variable Initializations

 Instance variables are automatically initialized
in Java
 boolean types are initialized to false
 Other primitives are initialized to the zero of

their type
 Class types are initialized to null

 However, it is a better practice to explicitly
initialize instance variables in a constructor

 Note: Local variables are not automatically
initialized

Java-02- 19

 Method definitions are divided into two parts: a
heading and a method body:
 public void myMethod() Heading
 {
 code to perform some action Body
 and/or compute a value
 }

 Methods are invoked using the name of the calling
object and the method name as follows:
 classVar.myMethod();

 Invoking a method is equivalent to executing the
method body

Instance Variables and Methods

Java-02- 20

More About Methods

 There are two kinds of methods:
 Methods that compute and return a value
 Methods that perform an action

 This type of method does not return a value, and
is called a void method

 Each type of method differs slightly in how it
is defined as well as how it is (usually)
invoked

Java-02- 21

More About Methods

 A method that returns a value must specify
the type of that value in its heading:

 public typeReturned methodName(paramList)

 A void method uses the keyword void in its
heading to show that it does not return a
value :

 public void methodName(paramList)

Java-02- 22

Terminology Comparisons

 Other high-level languages have constructs
called procedures, methods, functions, and/or
subprograms
 These types of constructs are called methods

in Java
 All programming constructs in Java, including

methods, are part of a class

Java-02- 23

The this Parameter

 All instance variables are understood to have
<the calling object>. in front of them

 If an explicit name for the calling object is
needed, the keyword this can be used
 myInstanceVariable always means and is

always interchangeable with
this.myInstanceVariable

Java-02- 24

The this Parameter

 this must be used if a parameter or other
local variable with the same name is used in
the method
 Otherwise, all instances of the variable name

will be interpreted as local

 int someVariable = this.someVariable

local instance

Java-02- 25

The this Parameter

 The this parameter is a kind of hidden
parameter

 Even though it does not appear on the
parameter list of a method, it is still a
parameter

 When a method is invoked, the calling object
is automatically plugged in for this

 A Constructor has a this Parameter

Java-02- 26

Variable Declarations

 Variable declarations in Java are similar to
those in other programming languages
 Simply give the type of the variable followed

by its name and a semicolon

int answer;

Java-02- 27

Variable Declarations

 Every variable in a Java program must be declared
before it is used
 A variable declaration tells the compiler what kind of

data (type) will be stored in the variable
 The type of the variable is followed by one or more

variable names separated by commas, and terminated
with a semicolon

 Variables are typically declared just before they are
used or at the start of a block (indicated by an opening
brace {)

 Basic types in Java are called primitive types
int numberOfBeans;
double oneWeight, totalWeight;

Java-02- 28

The methods equals and toString

 Java expects certain methods, such as equals and
toString, to be in all, or almost all, classes

 The purpose of equals, a boolean valued method,
is to compare two objects of the class to see if they
satisfy the notion of "being equal"
 Note: You cannot use == to compare objects
 public boolean equals(ClassName objectName)

 The purpose of the toString method is to return a
String value that represents the data in the object
 public String toString()

Java-02- 29

Identifiers

 Identifier: The name of a variable or other item
(class, method, object, etc.) defined in a program
 A Java identifier must not start with a digit, and all

the characters must be letters, digits, or the
underscore symbol

 Java identifiers can theoretically be of any length
 Java is a case-sensitive language: Rate, rate,

and RATE are the names of three different
variables

Java-02- 30

Constants

 Constant (or literal): An item in Java which has one specific
value that cannot change
 Constants of an integer type may not be written with a

decimal point (e.g., 10)
 Constants of a floating-point type can be written in ordinary

decimal fraction form (e.g., 367000.0 or 0.000589)
 Constant of a floating-point type can also be written in

scientific (or floating-point) notation (e.g., 3.67e5 or 5.89e-
4)

 Note that the number before the e may contain a
decimal point, but the number after the e may not

Java-02- 31

Constants

 Constants of type char are expressed by placing a
single character in single quotes (e.g., 'Z')

 Constants for strings of characters are enclosed by
double quotes (e.g., "Welcome to Java")

 There are only two boolean type constants, true
and false
 Note that they must be spelled with all lowercase

letters

Java-02- 32

Naming Constants

 Instead of using "anonymous" numbers in a program,
always declare them as named constants, and use
their name instead
public static final int INCHES_PER_FOOT = 12;
public static final double RATE = 0.14;
 This prevents a value from being changed

inadvertently
 It has the added advantage that when a value must

be modified, it need only be changed in one place
 Note the naming convention for constants: Use all

uppercase letters, and designate word boundaries
with an underscore character

Java-02- 33

Expressions

 In Java, the equal sign (=) is used as the
assignment operator
 The variable on the left side of the assignment

operator is assigned the value of the expression
on the right side of the assignment operator

answer = 2 + 2;

 In Java, the plus sign (+) can be used to denote
addition (as above) or concatenation
 Using +, two strings can be connected together

System.out.println("2 plus 2 is " + answer);

Java-02- 34

Expressions

 In Java, the assignment statement is used to change the
value of a variable
 The equal sign (=) is used as the assignment operator
 An assignment statement consists of a variable on the left

side of the operator, and an expression on the right side of
the operator

Variable = Expression;
 An expression consists of a variable, number, or mix of

variables, numbers, operators, and/or method invocations
temperature = 98.6;

count = numberOfBeans;

Java-02- 35

Expressions

 When an assignment statement is executed, the expression
is first evaluated, and then the variable on the left-hand side
of the equal sign is set equal to the value of the expression

distance = rate * time;
 Note that a variable can occur on both sides of the

assignment operator

count = count + 2;
 The assignment operator is automatically executed from

right-to-left, so assignment statements can be chained

number2 = number1 = 3;

Java-02- 36

Initializations

 A variable that has been declared but that
has not yet been given a value by some
means is said to be uninitialized

 In certain cases an uninitialized variable is
given a default value
 It is best not to rely on this
 Explicitly initialized variables have the added

benefit of improving program clarity

Java-02- 37

Initializations

 The declaration of a variable can be combined
with its initialization via an assignment
statement

int count = 0;
double distance = 55 * .5;
char grade = 'A';

 Note that some variables can be initialized and
others can remain uninitialized in the same
declaration
int initialCount = 50, finalCount;

Java-02- 38

Shorthand Assignment Statements

 Shorthand assignment notation combines the assignment
operator (=) and an arithmetic operator

 It is used to change the value of a variable by adding,
subtracting, multiplying, or dividing by a specified value

 The general form is
Variable Op = Expression

which is equivalent to
Variable = Variable Op (Expression)

 The Expression can be another variable, a constant,
or a more complicated expression

 Some examples of what Op can be are +, -, *, /, or %

Java-02- 39

Shorthand Assignment Statements

Example: Equivalent To:

count += 2; count = count + 2;

sum -= discount; sum = sum – discount;

bonus *= 2; bonus = bonus * 2;

time /= rushFactor; time = time / rushFactor;

change %= 100; change = change % 100;

amount *=
count1 + count2;

amount = amount * (count1
+ count2);

Java-02- 40

Assignment Compatibility

 In general, the value of one type cannot be
stored in a variable of another type

int intVariable = 2.99; //Illegal
 The above example results in a type mismatch

because a double value cannot be stored in an
int variable

 However, there are exceptions to this
double doubleVariable = 2;

 For example, an int value can be stored in a
double type

Java-02- 41

Assignment Compatibility

 More generally, a value of any type in the following list can
be assigned to a variable of any type that appears to the
right of it
byte→short→int→long→float→double
char
 Note that as your move down the list from left to right,

the range of allowed values for the types becomes
larger

 An explicit type cast is required to assign a value of one
type to a variable whose type appears to the left of it on the
above list (e.g., double to int)

 Note that in Java an int cannot be assigned to a variable
of type boolean, nor can a boolean be assigned to a
variable of type int

Java-02- 42

Arithmetic Operators and Expressions

 As in most languages, expressions can be
formed in Java using variables, constants,
and arithmetic operators
 These operators are + (addition), -

(subtraction), * (multiplication), / (division),
and % (modulo, remainder)

 An expression can be used anyplace it is legal
to use a value of the type produced by the
expression

Java-02- 43

Arithmetic Operators and Expressions

 If an arithmetic operator is combined with int operands,
then the resulting type is int

 If an arithmetic operator is combined with one or two
double operands, then the resulting type is double

 If different types are combined in an expression, then the
resulting type is the right-most type on the following list
that is found within the expression
byte→short→int→long→float→double
char
 Exception: If the type produced should be byte or
short (according to the rules above), then the type
produced will actually be an int

Java-02- 44

Parentheses and Precedence Rules

 An expression can be fully parenthesized in
order to specify exactly what subexpressions
are combined with each operator

 If some or all of the parentheses in an
expression are omitted, Java will follow
precedence rules to determine, in effect,
where to place them
 However, it's best (and sometimes necessary)

to include them

Java-02- 45

Precedence Rules

Java-02- 46

Precedence and Associativity Rules

 When the order of two adjacent operations must be
determined, the operation of higher precedence (and
its apparent arguments) is grouped before the
operation of lower precedence

base + rate * hours is evaluated as

base + (rate * hours)
 When two operations have equal precedence, the

order of operations is determined by associativity
rules

Java-02- 47

Precedence and Associativity Rules

 Unary operators of equal precedence are grouped
right-to-left
+-+rate is evaluated as +(-(+rate))

 Binary operators of equal precedence are grouped
left-to-right
base + rate + hours is evaluated as
(base + rate) + hours

 Exception: A string of assignment operators is
grouped right-to-left
n1 = n2 = n3; is evaluated as n1 = (n2 =
n3);

Java-02- 48

Integer and Floating-Point Division

 When one or both operands are a floating-point type,
division results in a floating-point type
15.0/2 evaluates to 7.5

 When both operands are integer types, division
results in an integer type
 Any fractional part is discarded
 The number is not rounded

15/2 evaluates to 7
 Be careful to make at least one of the operands a

floating-point type if the fractional portion is needed

Java-02- 49

The % Operator

 The % operator is used with operands of type
int to recover the information lost after
performing integer division
15/2 evaluates to the quotient 7

15%2 evaluates to the remainder 1
 The % operator can be used to count by 2's,

3's, or any other number
 To count by twos, perform the operation
number % 2, and when the result is 0, number
is even

Java-02- 50

Type Casting

 A type cast takes a value of one type and produces a
value of another type with an "equivalent" value
 If n and m are integers to be divided, and the

fractional portion of the result must be preserved, at
least one of the two must be type cast to a floating-
point type before the division operation is performed
double ans = n / (double)m;

 Note that the desired type is placed inside
parentheses immediately in front of the variable to
be cast

 Note also that the type and value of the variable to
be cast does not change

Java-02- 51

More Details About Type Casting

 When type casting from a floating-point to an integer
type, the number is truncated, not rounded
 (int)2.9 evaluates to 2, not 3

 When the value of an integer type is assigned to a
variable of a floating-point type, Java performs an
automatic type cast called a type coercion

double d = 5;
 In contrast, it is illegal to place a double value into

an int variable without an explicit type cast
int i = 5.5; // Illegal
int i = (int)5.5 // Correct

Java-02- 52

Increment and Decrement Operators

The increment operator (++) adds one
to the value of a variable
 If n is equal to 2, then n++ or ++n will

change the value of n to 3
The decrement operator (--) subtracts

one from the value of a variable
 If n is equal to 4, then n-- or --n will

change the value of n to 3

Java-02- 53

Increment and Decrement Operators

 When either operator precedes its variable,
and is part of an expression, then the
expression is evaluated using the changed
value of the variable
 If n is equal to 2, then 2*(++n) evaluates to 6

 When either operator follows its variable, and
is part of an expression, then the expression
is evaluated using the original value of the
variable, and only then is the variable value
changed
 If n is equal to 2, then 2*(n++) evaluates to 4

Java-02- 54

The Class String

 There is no primitive type for strings in Java
 The class String is a predefined class in Java

that is used to store and process strings
 Objects of type String are made up of strings of

characters that are written within double quotes
 Any quoted string is a constant of type String

"Live long and prosper."
 A variable of type String can be given the value

of a String object
String blessing = "Live long and
prosper.";

Java-02- 55

Concatenation of Strings

 Concatenation: Using the + operator on two
strings in order to connect them to form one
longer string
 If greeting is equal to "Hello ", and
javaClass is equal to "class", then
greeting + javaClass is equal to "Hello
class"

 Any number of strings can be concatenated
together

 When a string is combined with almost any other
type of item, the result is a string
 "The answer is " + 42 evaluates to
 "The answer is 42"

Java-02- 56

String Methods

 The String class contains many useful methods for
string-processing applications
 A String method is called by writing a String object,

a dot, the name of the method, and a pair of
parentheses to enclose any arguments

 If a String method returns a value, then it can be
placed anywhere that a value of its type can be used
String greeting = "Hello";
int count = greeting.length();
System.out.println("Length is " +
greeting.length());

 Always count from zero when referring to the position or
index of a character in a string

Java-02- 57

Some Methods in the Class String

Java-02- 58

Some Methods in the Class String

Java-02- 59

Some Methods in the Class String

Java-02- 60

Some Methods in the Class String

Java-02- 61

Some Methods in the Class String

Java-02- 62

Some Methods in the Class String

Java-02- 63

Some Methods in the Class String

Java-02- 64

Some Methods in the Class String

Java-02- 65

String Indexes

Java-02- 66

Escape Sequences

 A backslash (\) immediately preceding a
character (i.e., without any space) denotes an
escape sequence or an escape character
 The character following the backslash does

not have its usual meaning
 Although it is formed using two symbols, it is

regarded as a single character

Java-02- 67

Escape Sequences

Java-02- 68

String Processing

 A String object in Java is considered to be
immutable, i.e., the characters it contains cannot be
changed

 There is another class in Java called StringBuffer
that has methods for editing its string objects

 However, it is possible to change the value of a
String variable by using an assignment statement

String name = "Soprano";
name = "Anthony " + name;

Java-02- 69

Character Sets

 ASCII: A character set used by many programming
languages that contains all the characters normally
used on an English-language keyboard, plus a few
special characters
 Each character is represented by a particular number

 Unicode: A character set used by the Java language
that includes all the ASCII characters plus many of
the characters used in languages with a different
alphabet from English

Java-02- 70

main is a void Method

 A program in Java is just a class that has a
main method

 When you give a command to run a Java
program, the run-time system invokes the
method main

 Note that main is a void method, as
indicated by its heading:
public static void main(String[] args)

Java-02- 71

return Statements

 The body of both types of methods contains a list of
declarations and statements enclosed in a pair of
braces
 public <void or typeReturned> myMethod()

 {

 declarations Body

 statements

 }

Java-02- 72

return Statements

The body of a method that returns a
value must also contain one or more
return statements
 A return statement specifies the value

returned and ends the method
invocation:

 return Expression;
 Expression can be any expression

that evaluates to something of the type
returned listed in the method heading

Java-02- 73

return Statements

A void method need not contain a
return statement, unless there is a
situation that requires the method to
end before all its code is executed

 In this context, since it does not return a
value, a return statement is used
without an expression:
 return;

Java-02- 74

Method Definitions

 An invocation of a method that returns a
value can be used as an expression anyplace
that a value of the typeReturned can be
used:
typeReturned tRVariable;
tRVariable =
objectName.methodName();

 An invocation of a void method is simply a
statement:
objectName.methodName();

Java-02- 75

Any Method Can Be Used As a void
Method

A method that returns a value can also
perform an action

 If you want the action performed, but
do not need the returned value, you
can invoke the method as if it were a
void method, and the returned value
will be discarded:
objectName.returnedValueMethod();

Java-02- 76

Testing Methods

 Each method should be tested in a program in which
it is the only untested program
 A program whose only purpose is to test a method

is called a driver program
 One method often invokes other methods, so one

way to do this is to first test all the methods invoked
by that method, and then test the method itself
 This is called bottom-up testing

 Sometimes it is necessary to test a method before
another method it depends on is finished or tested
 In this case, use a simplified version of the

method, called a stub, to return a value for testing

Java-02- 77

The Fundamental Rule for Testing
Methods
Every method should be tested in a

program in which every other method in
the testing program has already been
fully tested and debugged

Java-02- 78

Preconditions and Postconditions

 The precondition of a method states what is
assumed to be true when the method is
called

 The postcondition of a method states what
will be true after the method is executed, as
long as the precondition holds

 It is a good practice to always think in terms
of preconditions and postconditions when
designing a method, and when writing the
method comment

Java-02- 79

Naming Conventions

 Start the names of variables, methods, and
objects with a lowercase letter, indicate "word"
boundaries with an uppercase letter, and restrict
the remaining characters to digits and lowercase
letters

topSpeed bankRate1 timeOfArrival

 Start the names of classes with an uppercase
letter and, otherwise, adhere to the rules above

FirstProgram MyClass String

	Module 2
	Object-oriented Programming
	Classes, Objects, and Methods
	Slide 4
	System.out.println
	A Sample Java Application Program
	Slide 7
	A Class Is a Type
	Primitive Type Values vs. Class Type Values
	Primitive Types
	The Contents of a Class Definition
	Instantiation of an Object
	Constructors
	Slide 14
	You Can Invoke Another Method in a Constructor
	Include a No-Argument Constructor
	Instance Variables and Methods
	Default Variable Initializations
	Slide 19
	More About Methods
	Slide 21
	Terminology Comparisons
	The this Parameter
	Slide 24
	Slide 25
	Variable Declarations
	Slide 27
	The methods equals and toString
	Identifiers
	Constants
	Slide 31
	Naming Constants
	Expressions
	Slide 34
	Slide 35
	Initializations
	Slide 37
	Shorthand Assignment Statements
	Slide 39
	Assignment Compatibility
	Slide 41
	Arithmetic Operators and Expressions
	Slide 43
	Parentheses and Precedence Rules
	Precedence Rules
	Precedence and Associativity Rules
	Slide 47
	Integer and Floating-Point Division
	The % Operator
	Type Casting
	More Details About Type Casting
	Increment and Decrement Operators
	Slide 53
	The Class String
	Concatenation of Strings
	String Methods
	Some Methods in the Class String
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	String Indexes
	Escape Sequences
	Slide 67
	String Processing
	Character Sets
	main is a void Method
	return Statements
	Slide 72
	Slide 73
	Method Definitions
	Any Method Can Be Used As a void Method
	Testing Methods
	The Fundamental Rule for Testing Methods
	Preconditions and Postconditions
	Naming Conventions

