
Adapted from Absolute Java, Rose Williams, Binghamton University

Module 3

Console Input and Output

Java-03- 2

System.out.println for
console output
 System.out is an object that is part of the Java

language
 println is a method invoked by the System.out

object that can be used for console output
 The data to be output is given as an argument in

parentheses
 A plus sign is used to connect more than one item
 Every invocation of println ends a line of output

System.out.println("The answer is " +
42);

Java-03- 3

println Versus print

 Another method that can be invoked by the
System.out object is print

 The print method is like println, except
that it does not end a line
 With println, the next output goes on a new

line
 With print, the next output goes on the same

line

Java-03- 4

Formatting Output with printf

 Starting with version 5.0, Java includes a method
named printf that can be used to produce output in
a specific format

 The Java method printf is similar to the print
method
 Like print, printf does not advance the output

to the next line
 System.out.printf can have any number of

arguments
 The first argument is always a format string that

contains one or more format specifiers for the
remaining arguments

 All the arguments except the first are values to be
output to the screen

Java-03- 5

printf Format Specifier

 The code
 double price = 19.8;
 System.out.print("$");
 System.out.printf("%6.2f", price);
 System.out.println(" each");

 will output the line
 $ 19.80 each

 The format string "%6.2f" indicates the following:
 End any text to be output and start the format specifier (%)
 Display up to 6 right-justified characters, pad fewer than six characters on the left

with blank spaces (i.e., field width is 6)
 Display exactly 2 digits after the decimal point (.2)
 Display a floating point number, and end the format specifier (i.e., the conversion

character is f)

Java-03- 6

Right and Left Justification in
printf
 The code

double value = 12.123;
System.out.printf("Start%8.2fEnd", value);
System.out.println();
System.out.printf("Start%-8.2fEnd", value);
System.out.println();

will output the following
Start 12.12End
Start12.12 End

 The format string "Start%8.2fEnd" produces output
that is right justified with three blank spaces before the
12.12

 The format string "Start%-8.2fEnd" produces output
that is left justified with three blank spaces after the
12.12

Java-03- 7

Line Breaks with printf

 Line breaks can be included in a format string
using %n

 The code
double price = 19.8;
String name = "magic apple";

System.outprintf("$%6.2f for each
%s.%n", price, name);

System.out.println("Wow");

 will output
$ 19.80 for each magic apple.
Wow

Java-03- 8

Format Specifiers for
System.out.printf

Java-03- 9

The printf Method (1/3)

Java-03- 10

The printf Method (2/3)

Java-03- 11

The printf Method (3/3)

Java-03- 12

Formatting Money Amounts with
printf

 A good format specifier for outputting an amount of
money stored as a double type is %.2f

 It says to include exactly two digits after the decimal
point and to use the smallest field width that the
value will fit into:
 double price = 19.99;
 System.out.printf("The price is $%.2f
each.")

 produces the output:
 The price is $19.99 each.

Java-03- 13

Money Formats

 Using the NumberFormat class enables a program
to output amounts of money using the appropriate
format
 The NumberFormat class must first be imported

in order to use it
import java.text.NumberFormat

 An object of NumberFormat must then be created
using the getCurrencyInstance() method

 The format method takes a floating-point number
as an argument and returns a String value
representation of the number in the local currency

Java-03- 14

Money Formats

import java.text.NumberFormat;

public class CurrencyFormatDemo
{
 public static void main(String[] args)
 {
 System.out.println("Default location:");
 NumberFormat moneyFormater =
 NumberFormat.getCurrencyInstance();

 System.out.println(moneyFormater.format(19.8));
 System.out.println(moneyFormater.format(19.81111));
 System.out.println(moneyFormater.format(19.89999));
 System.out.println(moneyFormater.format(19));
 System.out.println();
 }
}

Java-03- 15

Money Formats

 Output of the previous program

Default location:

$19.80

$19.81

$19.90

$19.00

Java-03- 16

Specifying Locale

 Invoking the getCurrencyInstance()
method without any arguments produces an
object that will format numbers according to
the default location

 In contrast, the location can be explicitly
specified by providing a location from the
Locale class as an argument to the
getCurrencyInstance() method
 When doing so, the Locale class must first

be imported
import java.util.Locale;

Java-03- 17

Specifying Locale

import java.text.NumberFormat;
import java.util.Locale;

public class CurrencyFormatDemo
{
 public static void main(String[] args)
 {
 System.out.println("US as location:");
 NumberFormat moneyFormater2 =
 NumberFormat.getCurrencyInstance(Locale.US);

 System.out.println(moneyFormater2.format(19.8));
 System.out.println(moneyFormater2.format(19.81111));
 System.out.println(moneyFormater2.format(19.89999));
 System.out.println(moneyFormater2.format(19));
 }
}

Java-03- 18

Specifying Locale

 Output of the previous program

US as location:

$19.80

$19.81

$19.90

$19.00

Java-03- 19

Locale Constants for Currencies of
Different Countries

Java-03- 20

The DecimalFormat Class

 Using the DecimalFormat class enables a program
to format numbers in a variety of ways
 The DecimalFormat class must first be imported
 A DecimalFormat object is associated with a

pattern when it is created using the new command
 The object can then be used with the method
format to create strings that satisfy the format

 An object of the class DecimalFormat has a
number of different methods that can be used to
produce numeral strings in various formats

Java-03- 21

The DecimalFormat Class (1/3)

Java-03- 22

The DecimalFormat Class (2/3)

Java-03- 23

The DecimalFormat Class (3/3)

Java-03- 24

Console Input Using the Scanner Class

 Starting with version 5.0, Java includes a class for
doing simple keyboard input named the Scanner
class

 In order to use the Scanner class, a program must
include the following line near the start of the file:
import java.util.Scanner

 This statement tells Java to
 Make the Scanner class available to the program
 Find the Scanner class in a library of classes

(i.e., Java package) named java.util

Java-03- 25

Console Input Using the Scanner Class

 The following line creates an object of the class
Scanner and names the object keyboard :
Scanner keyboard = new Scanner(System.in);

 Although a name like keyboard is often used, a
Scanner object can be given any name
 For example, in the following code the Scanner

object is named scannerObject
Scanner scannerObject = new Scanner(System.in);

 Once a Scanner object has been created, a program
can then use that object to perform keyboard input
using methods of the Scanner class

Java-03- 26

Console Input Using the Scanner Class

 The method nextInt reads one int value typed in at the
keyboard and assigns it to a variable:
int numberOfPods = keyboard.nextInt();

 The method nextDouble reads one double value typed in
at the keyboard and assigns it to a variable:
double d1 = keyboard.nextDouble();

 Multiple inputs must be separated by whitespace and read
by multiple invocations of the appropriate method
 Whitespace is any string of characters, such as blank

spaces, tabs, and line breaks that print out as white
space

Java-03- 27

Console Input Using the Scanner Class

 The method next reads one string of non-whitespace
characters delimited by whitespace characters such as
blanks or the beginning or end of a line

 Given the code
String word1 = keyboard.next();
String word2 = keyboard.next();

and the input line
jelly beans

 The value of word1 would be jelly, and the value of
word2 would be beans

Java-03- 28

Console Input Using the Scanner Class

 The method nextLine reads an entire line of keyboard input
 The code,

String line = keyboard.nextLine();
reads in an entire line and places the string that is read into the
variable line

 The end of an input line is indicated by the escape sequence
'\n'
 This is the character input when the Enter key is pressed
 On the screen it is indicated by the ending of one line and the

beginning of the next line
 When nextLine reads a line of text, it reads the '\n'

character, so the next reading of input begins on the next line
 However, the '\n' does not become part of the string value

returned (e.g., the string named by the variable line above
does not end with the '\n' character)

Java-03- 29

Keyboard Input Demonstration (1/2)

Java-03- 30

Keyboard Input Demonstration (2/2)

Java-03- 31

Another Keyboard Input
Demonstration (1/3)

Java-03- 32

Another Keyboard Input
Demonstration (2/3)

Java-03- 33

Another Keyboard Input
Demonstration (3/3)

Java-03- 34

Dealing with the Line Terminator, '\n'

 The method nextLine of the class Scanner reads the
remainder of a line of text starting wherever the last keyboard
reading left off

 This can cause problems when combining it with different
methods for reading from the keyboard such as nextInt

 Given the code,
Scanner keyboard = new Scanner(System.in);
int n = keyboard.nextInt();
String s1 = keyboard.nextLine();
String s2 = keyboard.nextLine();

 and the input,
2
Heads are better than
1 head.

 what are the values of n, s1, and s2?

Java-03- 35

Dealing with the Line Terminator, '\n'

 Given the code and input on the previous slide
n will be equal to "2",
s1 will be equal to "", and
s2 will be equal to "heads are better than"

 If the following results were desired instead
n equal to "2",
s1 equal to "heads are better than", and
s2 equal to "1 head"

 then an extra invocation of nextLine would be needed
to get rid of the end of line character ('\n')

Java-03- 36

Methods in the Class Scanner (1/3)

Java-03- 37

Methods in the Class Scanner (2/3)

Java-03- 38

Methods in the Class Scanner (3/3)

Java-03- 39

Prompt for Input

 A program should always prompt the user
when he or she needs to input some data:
System.out.println(

 "Enter the number of pods followed by");

System.out.println(

 "the number of peas in a pod:");

Java-03- 40

Echo Input

 Always echo all input that a program
receives from the keyboard

 In this way a user can check that he or she
has entered the input correctly
 Even though the input is automatically

displayed as the user enters it, echoing the
input may expose subtle errors (such as
entering the letter "O" instead of a zero)

Java-03- 41

Self-Service Checkout Line (1/2)

Java-03- 42

Self-Service Checkout Line (2/2)

Java-03- 43

The Empty String

 A string can have any number of characters,
including zero characters
 "" is the empty string

 When a program executes the nextLine
method to read a line of text, and the user
types nothing on the line but presses the
Enter key, then the nextLine Method reads
the empty string

Java-03- 44

Other Input Delimiters

 The delimiters that separate keyboard input can be
changed when using the Scanner class

 For example, the following code could be used to
create a Scanner object and change the delimiter
from whitespace to "##"
Scanner keyboard2 = new
Scanner(System.in);

Keyboard2.useDelimiter("##");
 After invocation of the useDelimiter method, "##"

and not whitespace will be the only input delimiter for
the input object keyboard2

Java-03- 45

Changing the Input Delimiter (1/3)

Java-03- 46

Changing the Input Delimiter (2/3)

Java-03- 47

Changing the Input Delimiter (3/3)

	Module 3
	System.out.println for console output
	println Versus print
	Formatting Output with printf
	printf Format Specifier
	Right and Left Justification in printf
	Line Breaks with printf
	Format Specifiers for System.out.printf
	The printf Method (1/3)
	The printf Method (2/3)
	The printf Method (3/3)
	Formatting Money Amounts with printf
	Money Formats
	Slide 14
	Slide 15
	Specifying Locale
	Slide 17
	Slide 18
	Locale Constants for Currencies of Different Countries
	The DecimalFormat Class
	The DecimalFormat Class (1/3)
	The DecimalFormat Class (2/3)
	The DecimalFormat Class (3/3)
	Console Input Using the Scanner Class
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Keyboard Input Demonstration (1/2)
	Keyboard Input Demonstration (2/2)
	Another Keyboard Input Demonstration (1/3)
	Another Keyboard Input Demonstration (2/3)
	Another Keyboard Input Demonstration (3/3)
	Dealing with the Line Terminator, '\n'
	Slide 35
	Methods in the Class Scanner (1/3)
	Methods in the Class Scanner (2/3)
	Methods in the Class Scanner (3/3)
	Prompt for Input
	Echo Input
	Self-Service Checkout Line (1/2)
	Self-Service Checkout Line (2/2)
	The Empty String
	Other Input Delimiters
	Changing the Input Delimiter (1/3)
	Changing the Input Delimiter (2/3)
	Changing the Input Delimiter (3/3)

