
Adapted from Absolute Java, Rose Williams, Binghamton University 

Module 8

Exception Handling



 
Java-08- 2

Introduction to Exception 
Handling
Sometimes the best outcome can be 

when nothing unusual happens
However, the case where exceptional 

things happen must also be prepared 
for
 Java exception handling facilities are 

used when the invocation of a method 
may cause something exceptional to 
occur 



 
Java-08- 3

Introduction to Exception 
Handling
 Java library software (or programmer-defined 

code) provides a mechanism that signals 
when something unusual happens
 This is called throwing an exception

 In another place in the program, the 
programmer must provide code that deals 
with the exceptional case
 This is called handling the exception



 
Java-08- 4

try-throw-catch Mechanism

 The basic way of handling exceptions in Java consists of 
the try-throw-catch trio

 The try block contains the code for the basic algorithm
  It tells what to do when everything goes smoothly

 It is called a try block because it "tries" to execute the 
case where all goes as planned
 It can also contain code that throws an exception if 

something unusual happens
try
{
  CodeThatMayThrowAnException
}



 
Java-08- 5

try-throw-catch Mechanism

throw new 
  ExceptionClassName(PossiblySomeArguments);

 When an exception is thrown, the execution of the 
surrounding try block is stopped
 Normally, the flow of control is transferred to 

another portion of code known as the catch block
 The value thrown is the argument to the throw 

operator, and is always an object of some exception 
class
 The execution of a throw statement is called 

throwing an exception



 
Java-08- 6

try-throw-catch Mechanism

 A throw statement is similar to a method 
call:
throw new ExceptionClassName(SomeString);

 In the above example, the object of class 
ExceptionClassName is created using a 
string as its argument

 This object, which is an argument to the 
throw operator, is the exception object 
thrown

 Instead of calling a method, a throw 
statement calls a catch block



 
Java-08- 7

try-throw-catch Mechanism

 When an exception is thrown, the catch 
block begins execution
 The catch block has one parameter
 The exception object thrown is plugged in for 

the catch block parameter
 The execution of the catch block is called 

catching the exception, or handling the 
exception
 Whenever an exception is thrown, it should 

ultimately be handled (or caught) by some 
catch block



 
Java-08- 8

try-throw-catch Mechanism

catch(Exception e)
{
  ExceptionHandlingCode
}

 A catch block looks like a method definition that has 
a parameter of type Exception class
 It is not really a method definition, however

 A catch block is a separate piece of code that is 
executed when a program encounters and executes 
a throw statement in the preceding try block
 A catch block is often referred to as an exception 

handler
 It can have at most one parameter



 
Java-08- 9

try-throw-catch Mechanism

catch(Exception e) { . . . }
 The identifier e in the above catch block heading is 

called the catch block parameter
 The catch block parameter does two things:

1. It specifies the type of thrown exception object that 
the catch block can catch (e.g., an Exception 
class object above)

2. It provides a name (for the thrown object that is 
caught) on which it can operate in the catch block
– Note:  The identifier e is often used by 

convention, but any non-keyword identifier can 
be used



 
Java-08- 10

try-throw-catch Mechanism

 When a try block is executed, two things 
can happen:
1.  No exception is thrown in the try block

– The code in the try block is executed to the end 
of the block

– The catch block is skipped
– The execution continues with the code placed 

after the catch block



 
Java-08- 11

try-throw-catch Mechanism

2.  An exception is thrown in the try block and 
caught in the catch block

– The rest of the code in the try block is skipped
– Control is transferred to a following catch block 

(in simple cases) 
– The thrown object is plugged in for the catch 

block parameter
– The code in the catch block is executed
– The code that follows that catch block is 

executed (if any)



 
Java-08- 12

Exception Classes

 There are more exception classes than just the single class 
Exception
 There are more exception classes in the standard Java 

libraries
 New exception classes can be defined like any other class

 All predefined exception classes have the following properties:
 There is a constructor that takes a single argument of type 
String

 The class has an accessor method getMessage that can 
recover the string given as an argument to the constructor 
when the exception object was created

 All programmer-defined classes should have the same 
properties



 
Java-08- 13

Exception Classes from Standard 
Packages
 Numerous predefined exception classes are included 

in the standard packages that come with Java
 For example:

IOException
NoSuchMethodException
FileNotFoundException
NumberFormatException

 Many exception classes must be imported in order to 
use them
import java.io.IOException;



 
Java-08- 14

Exception Classes from Standard 
Packages
 The predefined exception class Exception 

is the root class for all exceptions
 Every exception class is a descendent class of 

the class Exception
 Although the Exception class can be used 

directly in a class or program, it is most often 
used to define a derived class

 The class Exception is in the java.lang 
package, and so requires no import 
statement



 
Java-08- 15

Using the getMessage Method

. . . // method code
try
{
  . . .
  throw new Exception(StringArgument);
  . . .
}
catch(Exception e)
{
  String message = e.getMessage();
  System.out.println(message);
  System.exit(0);
}  . . .



 
Java-08- 16

Using the getMessage Method

 Every exception has a String instance 
variable that contains some message
 This string typically identifies the reason for 

the exception
 In the previous example, StringArgument 

is an argument to the Exception constructor
 This is the string used for the value of the  

string instance variable of exception e
 Therefore, the method call e.getMessage() 

returns this string



 
Java-08- 17

Multiple catch Blocks

 A try block can potentially throw any number 
of exception values, and they can be of 
differing types
 In any one execution of a try block, at most 

one exception can be thrown (since a throw 
statement ends the execution of the try 
block)

 However, different types of exception values 
can be thrown on different executions of the 
try block



 
Java-08- 18

Multiple catch Blocks

 Each catch block can only catch values of 
the exception class type given in the catch 
block heading 

 Different types of exceptions can be caught 
by placing more than one catch block after a 
try block
 Any number of catch blocks can be included, 

but they must be placed in the correct order



 
Java-08- 19

Catch the More Specific Exception 
First
When catching multiple exceptions, the 

order of the catch blocks is important
 When an exception is thrown in a try 

block, the catch blocks are examined 
in order

 The first one that matches the type of 
the exception thrown is the one that is 
executed



 
Java-08- 20

Catch the More Specific Exception 
First

catch (Exception e)
{ . . . }
catch (NegativeNumberException e)
{ . . . }

 Because a NegativeNumberException is a type 
of Exception, all NegativeNumberExceptions 
will be caught by the first catch block before ever 
reaching the second block
 The catch block for 
NegativeNumberException will never be used!

 For the correct ordering, simply reverse the two 
blocks



 
Java-08- 21

Throwing an Exception in a 
Method
 Sometimes it makes sense to throw an exception in a 

method, but not catch it in the same method
 Some programs that use a method should just end if 

an exception is thrown, and other programs should 
do something else

 In such cases, the program using the method should 
 enclose the method invocation in a try block, and 
catch the exception in a catch block that follows

 In this case, the method itself would not include try 
and catch blocks
 However, it would have to include a throws clause



 
Java-08- 22

Declaring Exceptions in a throws 
Clause
 If a method can throw an exception but does 

not catch it, it must provide a warning 
 This warning is called a throws clause
 The process of including an exception class in 

a throws clause is called declaring the 
exception

throws AnException  //throws clause
 The following states that an invocation of 
aMethod could throw AnException
public void aMethod() throws AnException



 
Java-08- 23

Declaring Exceptions in a throws 
Clause
 If a method can throw more than one type of 

exception, then separate the exception types 
by commas
public void aMethod() throws

  AnException, AnotherException

 If a method throws an exception and does not 
catch it, then the method invocation ends 
immediately



 
Java-08- 24

The Catch or Declare Rule

 Most ordinary exceptions that might be 
thrown within a method must be accounted 
for in one of two ways:

1. The code that can throw an exception is 
placed within a try block, and the possible 
exception is caught in a catch block within 
the same method

2. The possible exception can be declared at 
the start of the method definition by placing 
the exception class name in a throws 
clause 



 
Java-08- 25

The Catch or Declare Rule

 The first technique handles an exception in a catch 
block

 The second technique is a way to shift the exception 
handling responsibility to the method that invoked the 
exception throwing method

 The invoking method must handle the exception, 
unless it too uses the same technique to pass it up

 Ultimately, every exception that is thrown should 
eventually be caught by a catch block in some 
method that does not just declare the exception class 
in a throws clause



 
Java-08- 26

The Catch or Declare Rule

 In any one method, both techniques can be mixed
 Some exceptions may be caught, and others may be 

declared in a throws clause
 However, these techniques must be used consistently 

with a given exception
 If an exception is not declared, then it must be handled 

within the method
 If an exception is declared, then the responsibility for 

handling it is shifted to some other calling method
 Note that if a method definition encloses an invocation 

of a second method, and the second method can 
throw an exception and does not catch it, then the first 
method must catch or declare it



 
Java-08- 27

What Happens If an Exception is 
Never Caught?
 If  every method up to and including the main method 

simply includes a throws clause for an exception, that 
exception may be thrown but never caught
 In a GUI program (i.e., a program with a windowing 

interface), nothing happens - but the user may be 
left in an unexplained situation, and the program 
may be no longer be reliable

 In non-GUI programs, this causes the program to 
terminate with an error message giving the name of 
the exception class

 Every well-written program should eventually catch 
every exception by a catch block in some method



 
Java-08- 28

Nested try-catch Blocks

 It is possible to place a try block and its following catch 
blocks inside a larger try block, or inside a larger catch 
block
 If a set of try-catch blocks are placed inside a 

larger catch block, different names must be used for 
the catch block parameters in the inner and outer 
blocks, just like any other set of nested blocks

 If a set of try-catch blocks are placed inside a 
larger try block, and an exception is thrown in the 
inner try block that is not caught, then the exception 
is thrown to the outer try block for processing, and 
may be caught in one of its catch blocks



 
Java-08- 29

The finally Block
 The finally block contains code to be executed whether or 

not an exception is thrown in a try block
 If it is used, a finally block is placed after a try block 

and its following catch blocks
try
{  . . .  }
catch(ExceptionClass1 e)
{  . . .  }
  . . . 
catch(ExceptionClassN e)
{  . . .  }
finally
{
  CodeToBeExecutedInAllCases
}



 
Java-08- 30

The finally Block

 If the try-catch-finally blocks are inside a 
method definition, there are three possibilities when 
the code is run:

1. The try block runs to the end, no exception is 
thrown, and the finally block is executed

2. An exception is thrown in the try block, caught in 
one of the catch blocks, and the finally block 
is executed

3. An exception is thrown in the try block, there is 
no matching catch block in the method, the 
finally block is executed, and then the method 
invocation ends and the exception object is 
thrown to the enclosing method



 
Java-08- 31

Exception Handling with the 
Scanner Class
 The nextInt method of the Scanner class 

can be used to read int values from the 
keyboard

 However, if a user enters something other 
than a well-formed int value, an 
InputMismatchException will be thrown
 Unless this exception is caught, the program 

will end with an error message
 If the exception is caught, the catch block 

can give code for some alternative action, 
such as asking the user to reenter the input



 
Java-08- 32

The 
InputMismatchException
 The InputMismatchException is in the 

standard Java package java.util
 A program that refers to it must use an 
import statement, such as the following:
import java.util.InputMismatchException;



 
Java-08- 33

Exception Controlled Loops

 Sometimes it is better to simply loop through an action 
again when an exception is thrown, as follows:

boolean done = false;
while (! done)
{
  try
  {
    CodeThatMayThrowAnException
    done = true;
  }
  catch (SomeExceptionClass e)
  {
    SomeMoreCode
  }
}



 
Java-08- 34

An Exception Controlled Loop 
(Part 1 of 3)



 
Java-08- 35

An Exception Controlled Loop 
(Part 2 of 3)



 
Java-08- 36

An Exception Controlled Loop 
(Part 3 of 3)



 
Java-08- 37

Re-throwing an Exception

 A catch block can contain code that throws 
an exception
 Sometimes it is useful to catch an exception 

and then, depending on the string produced by 
getMessage (or perhaps something else), 
throw the same or a different exception for 
handling further up the chain of exception 
handling blocks


	Module 8
	Introduction to Exception Handling
	Slide 3
	try-throw-catch Mechanism
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Exception Classes
	Exception Classes from Standard Packages
	Slide 14
	Using the getMessage Method
	Slide 16
	Multiple catch Blocks
	Slide 18
	Catch the More Specific Exception First
	Slide 20
	Throwing an Exception in a Method
	Declaring Exceptions in a throws Clause
	Slide 23
	The Catch or Declare Rule
	Slide 25
	Slide 26
	What Happens If an Exception is Never Caught?
	Nested try-catch Blocks
	The finally Block
	Slide 30
	Exception Handling with the Scanner Class
	The InputMismatchException
	Exception Controlled Loops
	An Exception Controlled Loop  (Part 1 of 3)
	An Exception Controlled Loop  (Part 2 of 3)
	An Exception Controlled Loop  (Part 3 of 3)
	Re-throwing an Exception

