
Adapted from Absolute Java, Rose Williams, Binghamton University

Module 9

File I/O

Java-09- 2

Streams

 A stream is an object that enables the flow of
data between a program and some I/O device
or file
 If the data flows into a program, then the

stream is called an input stream
 If the data flows out of a program, then the

stream is called an output stream

Java-09- 3

Streams

 Input streams can flow from the keyboard or from a
file
 System.in is an input stream that connects to the

keyboard
 Scanner keyboard = new Scanner(System.in);

 Output streams can flow to a screen or to a file
 System.out is an output stream that connects to the

screen
System.out.println("Output stream");

Java-09- 4

Writing to a Text File

 The class PrintWriter is a stream class
that can be used to write to a text file
 An object of the class PrintWriter has the

methods print and println
 These are similar to the System.out

methods of the same names, but are used for
text file output, not screen output

Java-09- 5

Writing to a Text File

 All the file I/O classes that follow are in the package
java.io, so a program that uses PrintWriter will
start with a set of import statements:
import java.io.PrintWriter;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;

 The class PrintWriter has no constructor that
takes a file name as its argument
 It uses another class, FileOutputStream, to

convert a file name to an object that can be used
as the argument to its (the PrintWriter)
constructor

Java-09- 6

Writing to a Text File

 A stream of the class PrintWriter is
created and connected to a text file for writing
as follows:

PrintWriter outputStreamName;

outputStreamName = new PrintWriter(new

 FileOutputStream(FileName));

 The class FileOutputStream takes a string
representing the file name as its argument

 The class PrintWriter takes the anonymous
FileOutputStream object as its argument

Java-09- 7

Writing to a Text File

 This produces an object of the class
PrintWriter that is connected to the file
FileName
 The process of connecting a stream to a file is

called opening the file
 If the file already exists, then doing this causes

the old contents to be lost
 If the file does not exist, then a new, empty file

named FileName is created
 After doing this, the methods print and
println can be used to write to the file

Java-09- 8

Writing to a Text File

 When a text file is opened in this way, a
FileNotFoundException can be thrown
 In this context it actually means that the file could not be

created
 This type of exception can also be thrown when a program

attempts to open a file for reading and there is no such file
 It is therefore necessary to enclose this code in exception handling

blocks
 The file should be opened inside a try block
 A catch block should catch and handle the possible exception
 The variable that refers to the PrintWriter object should be

declared outside the block (and initialized to null) so that it is
not local to the block.. This is if it references elsewhere

Java-09- 9

Writing to a Text File

 When a program is finished writing to a file, it
should always close the stream connected to
that file
outputStreamName.close();
 This allows the system to release any resources

used to connect the stream to the file
 If the program does not close the file before the

program ends, Java will close it automatically, but
it is safest to close it explicitly

Java-09- 10

Writing to a Text File

 Output streams connected to files are usually
buffered
 Rather than physically writing to the file as

soon as possible, the data is saved in a
temporary location (buffer)

 When enough data accumulates, or when the
method flush is invoked, the buffered data is
written to the file all at once

 This is more efficient, since physical writes to
a file can be slow

Java-09- 11

Writing to a Text File

 The method close invokes the method
flush, thus insuring that all the data is
written to the file
 If a program relies on Java to close the file,

and the program terminates abnormally, then
any output that was buffered may not get
written to the file

 Also, if a program writes to a file and later
reopens it to read from the same file, it will
have to be closed first anyway

 The sooner a file is closed after writing to it,
the less likely it is that there will be a problem

Java-09- 12

File Names

 The rules for how file names should be
formed depend on a given operating system,
not Java
 When a file name is given to a java

constructor for a stream, it is just a string, not
a Java identifier

(e.g., "C:\\Documents and
Settings\\moataz\\Desktop\\fileName.txt")

 Any suffix used, such as .txt has no special
meaning to a Java program

Java-09- 13

Path Names

 When a file name is used as an argument to
a constructor for opening a file, it is assumed
that the file is in the same directory or folder
as the one in which the program is run

 If it is not in the same directory, the full or
relative path name must be given

Java-09- 14

Path Names

 The way path names are specified depends on the operating
system
 A typical UNIX path name that could be used as a file name

argument is
"/user/sallyz/data/data.txt"

 A BufferedReader input stream connected to this file is
created as follows:
BufferedReader inputStream =

 new BufferedReader(new

 FileReader("/user/sallyz/data/data.txt"));

Java-09- 15

Path Names

 The Windows operating system specifies path names in a
different way
 A typical Windows path name is the following:

C:\dataFiles\goodData\data.txt
 A BufferedReader input stream connected to this file is

created as follows:
BufferedReader inputStream = new

 BufferedReader(new FileReader

 ("C:\\dataFiles\\goodData\\data.txt"));
 Note that in Windows \\ must be used in place of \, since a

single backslash denotes an the beginning of an escape
sequence

Java-09- 16

Path Names

 A double backslash (\\) must be used for a
Windows path name enclosed in a quoted
string
 This problem does not occur with path names

read in from the keyboard
 Problems with escape characters can be

avoided altogether by always using UNIX
conventions when writing a path name
 A Java program will accept a path name

written in either Windows or Unix format
regardless of the operating system on which it
is run

Java-09- 17

A File Has Two Names

 Every input file and every output file used
by a program has two names:

1. The real file name used by the operating
system

2. The name of the stream that is connected to
the file

 The actual file name is used to connect to
the stream

 The stream name serves as a temporary
name for the file, and is the name that is
primarily used within the program

Java-09- 18

IOException

 When performing file I/O there are many situations
in which an exception, such as
FileNotFoundException, may be thrown

 Many of these exception classes are subclasses of
the class IOException
 The class IOException is the root class for a

variety of exception classes having to do with
input and/or output

 These exception classes are all checked
exceptions
 Therefore, they must be caught or declared in a

throws clause

Java-09- 19

Unchecked Exceptions

 In contrast, the exception classes
NoSuchElementException,
InputMismatchException, and
IllegalStateException are all
unchecked exceptions
 Unchecked exceptions are not required

to be caught or declared in a throws
clause

Java-09- 20

Appending to a Text File

 To create a PrintWriter object and connect it to a
text file for appending, a second argument, set to
true, must be used in the constructor for the
FileOutputStream object

outputStreamName = new PrintWriter(new
FileOutputStream(FileName, true));

 After this statement, the methods print, println,
append, and/or printf can be used to write to the file

 The new text will be written after the old text in the file

Java-09- 21

toString Helps with Text File
Output
 If a class has a suitable toString()

method, and anObject is an object of that
class, then anObject can be used as an
argument to System.out.println, and it
will produce sensible output

 The same thing applies to the methods
print and println of the class
PrintWriter
outputStreamName.println(anObject);

Java-09- 22

Reading From a Text File Using
Scanner
 The class Scanner can be used for reading from the

keyboard as well as reading from a text file
 Simply replace the argument System.in (to the
Scanner constructor) with a suitable stream that is
connected to the text file

Scanner StreamObject =
 new Scanner(new
FileInputStream(FileName));

 Methods of the Scanner class for reading input behave
the same whether reading from the keyboard or reading
from a text file
 For example, the nextInt and nextLine methods

Java-09- 23

Testing for the End of a Text File with
Scanner
 A program that tries to read beyond the end

of a file using methods of the Scanner class
will cause an exception to be thrown

 However, instead of having to rely on an
exception to signal the end of a file, the
Scanner class provides methods such as
hasNextInt and hasNextLine
 These methods can also be used to check

that the next token to be input is a suitable
element of the appropriate type

Java-09- 24

Checking for the End of a Text File
with hasNextLine (Part 1 of 4)

Java-09- 25

Checking for the End of a Text File
with hasNextLine (Part 2 of 4)

Java-09- 26

Checking for the End of a Text File
with hasNextLine (Part 3 of 4)

Java-09- 27

Checking for the End of a Text File
with hasNextLine (Part 4 of 4)

Java-09- 28

Checking for the End of a Text File
with hasNextInt (Part 1 of 2)

Java-09- 29

Checking for the End of a Text File
with hasNextInt (Part 2 of 2)

Java-09- 30

Reading From a Text File Using
BufferedReader
 The class BufferedReader is a stream class that

can be used to read from a text file
 An object of the class BufferedReader has the

methods read and readLine
 A program using BufferedReader, like one using
PrintWriter, will start with a set of import
statements:
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileNotFoundException;
import java.io.IOException;

Java-09- 31

Reading From a Text File Using
BufferedReader
 Like the classes PrintWriter and Scanner,
BufferedReader has no constructor that takes a file name
as its argument
 It needs to use another class, FileReader, to convert

the file name to an object that can be used as an
argument to its (the BufferedReader) constructor

 A stream of the class BufferedReader is created and
connected to a text file as follows:
BufferedReader readerObject;
readerObject = new BufferedReader(new
 FileReader(FileName));

 This opens the file for reading

Java-09- 32

Reading From a Text File

 After these statements, the methods read and
readLIne can be used to read from the file
 The readLine method is the same method

used to read from the keyboard, but in this case
it would read from a file

 The read method reads a single character, and
returns a value (of type int) that corresponds
to the character read

 Since the read method does not return the
character itself, a type cast must be used:
char next = (char)
(readerObject.read());

Java-09- 33

Reading From a Text File

 A program using a BufferedReader
object in this way may throw two kinds of
exceptions
 An attempt to open the file may throw a
FileNotFoundException (which in this
case has the expected meaning)

 An invocation of readLine may throw an
IOException

 Both of these exceptions should be handled

Java-09- 34

Reading Numbers

 Unlike the Scanner class, the class BufferedReader has
no methods to read a number from a text file
 Instead, a number must be read in as a string, and then

converted to a value of the appropriate numeric type
using one of the wrapper classes

 To read in a single number on a line by itself, first use
the method readLine, and then use
Integer.parseInt, Double.parseDouble, etc. to
convert the string into a number

 If there are multiple numbers on a line,
StringTokenizer can be used to decompose the
string into tokens, and then the tokens can be converted
as described above

Java-09- 35

Testing for the End of a Text File

 The method readLine of the class
BufferedReader returns null when it tries
to read beyond the end of a text file
 A program can test for the end of the file by

testing for the value null when using
readLine

 The method read of the class
BufferedReader returns -1 when it tries to
read beyond the end of a text file
 A program can test for the end of the file by

testing for the value -1 when using read

Java-09- 36

System.in, System.out, and
System.err
 The standard streams System.in, System.out,

and System.err are automatically available to
every Java program
 System.out is used for normal screen output
 System.err is used to output error messages to

the screen
 The System class provides three methods (setIn,
setOut, and setErr) for redirecting these standard
streams:

public static void setIn(InputStream inStream)
public static void setOut(PrintStream outStream)
public static void setErr(PrintStream outStream)

Java-09- 37

System.in, System.out, and
System.err
 Using these methods, any of the three

standard streams can be redirected
 For example, instead of appearing on the

screen, error messages could be redirected to
a file

 In order to redirect a standard stream, a new
stream object is created
 Like other streams created in a program, a

stream object used for redirection must be
closed after I/O is finished

 Note, standard streams do not need to be
closed

Java-09- 38

System.in, System.out, and
System.err
 Redirecting System.err:

public void getInput()
{
 . . .
 PrintStream errStream = null;
 try
 {
 errStream = new PrintStream(new
 FileOuptputStream("errMessages.txt"));
 System.setErr(errStream);
 . . . //Set up input stream and read
 }

Java-09- 39

System.in, System.out, and
System.err

 catch(FileNotFoundException e)
 {
 System.err.println("Input file not found");
 }
 finally
 {
 . . .
 errStream.close();
 }
}

Java-09- 40

Other Utilities

 The streams for sequential access to files are
the ones most commonly used for file access
in Java

 However, some applications require very rapid
access to records in very large databases
 These applications need to have random

access to particular parts of a file
 Read/Write Files
 Binary Files—Serialization (the Serializable

interface)

	Module 9
	Streams
	Slide 3
	Writing to a Text File
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	File Names
	Path Names
	Slide 14
	Slide 15
	Slide 16
	A File Has Two Names
	IOException
	Unchecked Exceptions
	Appending to a Text File
	toString Helps with Text File Output
	Reading From a Text File Using Scanner
	Testing for the End of a Text File with Scanner
	Checking for the End of a Text File with hasNextLine (Part 1 of 4)
	Checking for the End of a Text File with hasNextLine (Part 2 of 4)
	Checking for the End of a Text File with hasNextLine (Part 3 of 4)
	Checking for the End of a Text File with hasNextLine (Part 4 of 4)
	Checking for the End of a Text File with hasNextInt (Part 1 of 2)
	Checking for the End of a Text File with hasNextInt (Part 2 of 2)
	Reading From a Text File Using BufferedReader
	Slide 31
	Reading From a Text File
	Slide 33
	Reading Numbers
	Testing for the End of a Text File
	System.in, System.out, and System.err
	Slide 37
	Slide 38
	Slide 39
	Other Utilities

