
Adapted from Absolute Java, Rose Williams, Binghamton University

Module 1

Introduction

Java-01- 2

Language Paradigms

 Major Programming Language Paradigms
 Procedural

 Imperative
 Object-Oriented

 Declarative
 Functional
 Logic Programming

 More Concepts
 Concurrency
 Exception Handling
 Persistency

 Other Paradigms
 Constraint, Rule-Based, Pattern, Scripting, Visual Language

Paradigms

Java-01- 3

The Object Oriented Paradigm

Programming methodology that views a
program as consisting of objects that
interact with one another by means of
actions (called methods)

Objects of the same kind are said to
have the same type or be in the same
class

Java-01- 4

The Object Oriented Paradigm

Paradigm Evolution
 Procedural-Oriented – 1950s-1970s

(procedural abstraction)
 Data-Oriented – early 1980s (data

abstraction, called object-based)
 Object-Oriented – late 1980s

(Inheritance and dynamic binding)

Java-01- 5

The Object Oriented Paradigm

 Categories of languages that support OOP:
 OOP support is added to an existing language

 C++ (also supports procedural and data-oriented programming)
 Ada 95 (also supports procedural and data-oriented programming)
 CLOS (also supports functional programming)
 Scheme (also supports functional programming)

 Support OOP, but have the same appearance and use the
basic structure of earlier imperative languages

 Eiffel (not based directly on any previous language)
 Java (based on C++)

 Pure OOP languages
 Smalltalk

Java-01- 6

Language Implementation

 Implementation Methods
 Compilation (Executable Images)

 Machine Code

 Pure Interpretation
 Hybrid Implementation

 Intermediate Code:
Machine Language/Assembly Language

Java-01- 7

Computer Language Levels

 High-level language: A language that people can read, write,
and understand
 A program written in a high-level language must be

translated into a language that can be understood by a
computer before it can be run

 Machine language: A language that a computer can
understand

 Low-level language: Machine language or any language
similar to machine language

 Compiler: A program that translates a high-level language
program into an equivalent low-level language program
 This translation process is called compiling

Java-01- 8

Byte-Code and the Java Virtual
Machine
 The compilers for most programming languages

translate high-level programs directly into the
machine language for a particular computer
 Since different computers have different machine

languages, a different compiler is needed for each
one

 In contrast, the Java compiler translates Java
programs into byte-code, a machine language for a
fictitious computer called the Java Virtual Machine
 Once compiled to byte-code, a Java program can

be used on any computer, making it highly
portable

Java-01- 9

Byte-Code and the Java Virtual
Machine
 Interpreter: The program that translates a

program written in Java byte-code into the
machine language for a particular computer
when a Java program is executed
 The interpreter translates and immediately

executes each byte-code instruction, one after
another

 Translating byte-code into machine code is
relatively easy compared to the initial
compilation step

Java-01- 10

The Unified Modeling Language
(UML)
 Pseudocode is a way of representing a

program in a linear and algebraic manner
 It simplifies design by eliminating the details of

programming language syntax
 Graphical representation systems for program

design have also been used
 Flowcharts and structure diagrams for example

 Unified Modeling Language (UML) is yet
another graphical representation formalism
 UML is designed to reflect and be used with the

OOP philosophy

Java-01- 11

Introduction to Java

 Most people are familiar with Java as a
language for Internet applications

 We will study Java as a general purpose
programming language
 The syntax of expressions and assignments

will be similar to that of other high-level
languages

 Details concerning the handling of strings and
console output will probably be new

Java-01- 12

Origins of the Java Language

 Created by Sun Microsystems team led by
James Gosling (1991)

 Originally designed for programming home
appliances
 Difficult task because appliances are

controlled by a wide variety of computer
processors

 Team developed a two-step translation
process to simplify the task of compiler writing
for each class of appliances

Java-01- 13

Origins of the Java Language

 Significance of Java translation process
 Writing a compiler (translation program) for

each type of appliance processor would have
been very costly

 Instead, developed intermediate language that
is the same for all types of processors : Java
byte-code

 Therefore, only a small, easy to write program
was needed to translate byte-code into the
machine code for each processor

Java-01- 14

Program terminology

 Code: A program or a part of a program
 Source code (or source program): A program written

in a high-level language such as Java
 The input to the compiler program

 Object code: The translated low-level program
 The output from the compiler program, e.g., Java byte-

code
 In the case of Java byte-code, the input to the Java

byte-code interpreter

Java-01- 15

Class Loader

 Java programs are divided into smaller parts
called classes
 Each class definition is normally in a separate

file and compiled separately

 Class Loader: A program that connects the
byte-code of the classes needed to run a
Java program
 In other programming languages, the

corresponding program is called a linker

Java-01- 16

Java Application Programs

 There are two types of Java programs:
applications and applets

 A Java application program or "regular" Java
program is a class with a method named
main
 When a Java application program is run, the

run-time system automatically invokes the
method named main

 All Java application programs start with the
main method

Java-01- 17

Applets

 A Java applet (little Java application) is a
Java program that is meant to be run from a
Web browser
 Can be run from a location on the Internet
 Can also be run with an applet viewer program

for debugging
 Applets always use a windowing interface

 In contrast, application programs may use a
windowing interface or console (i.e., text) I/O

Java-01- 18

A Sample Java Application
Program

Java-01- 19

Syntax and Semantics

 Syntax: The arrangement of words and
punctuations that are legal in a language, the
grammar rules of a language

 Semantics: The meaning of things written
while following the syntax rules of a language

 Compilation can uncover syntax errors but
not semantic ones

Java-01- 20

Comments

 A line comment begins with the symbols //, and
causes the compiler to ignore the remainder of the
line
 This type of comment is used for the code writer or for

a programmer who modifies the code
 A block comment begins with the symbol pair /*, and

ends with the symbol pair */
 The compiler ignores anything in between
 This type of comment can span several lines
 This type of comment provides documentation for the

users of the program

Java-01- 21

Program Documentation

 Java comes with a program called javadoc that
will automatically extract documentation from block
comments in the classes you define
 As long as their opening has an extra asterisk (/**)

 Ultimately, a well written program is self-
documenting
 Its structure is made clear by the choice of identifier

names and the indenting pattern
 When one structure is nested inside another, the

inside structure is indented one more level

Java-01- 22

@ Tags

 @ tags should be placed in the order found below
 If there are multiple parameters, each should have its own

@param on a separate line, and each should be listed
according to its left-to-right order on the parameter list

 If there are multiple authors, each should have its own
@author on a separate line
@param Parameter_Name Parameter_Description
@return Description_Of_Value_Returned
@throws Exception_Type Explanation
@deprecated
@see Package_Name.Class_Name
@author Author
@version Version_Information

Java-01- 23

Compiling a Java Program or Class

 Each class definition must be in a file whose name is the same as
the class name followed by .java
 The class FirstProgram must be in a file named
FirstProgram.java

 Each class is compiled with the command javac followed by the
name of the file in which the class resides

javac FirstProgram.java
 The result is a byte-code program whose filename is the same

as the class name followed by .class

FirstProgram.class

 For now, your program and all the classes it uses
should be in the same directory or folder

Java-01- 24

Running a Java Program

 A Java program can be given the run command
(java) after all its classes have been compiled
 Only run the class that contains the main method

(the system will automatically load and run the
other classes, if any)

 The main method begins with the line:
public static void main(String[] args)
 Follow the run command by the name of the class

only (no .java or .class extension)
java FirstProgram

	Module 1
	Language Paradigms
	The Object Oriented Paradigm
	Slide 4
	Slide 5
	Language Implementation
	Computer Language Levels
	Byte-Code and the Java Virtual Machine
	Slide 9
	The Unified Modeling Language (UML)
	Introduction to Java
	Origins of the Java Language
	Slide 13
	Program terminology
	Class Loader
	Java Application Programs
	Applets
	A Sample Java Application Program
	Syntax and Semantics
	Comments
	Program Documentation
	@ Tags
	Compiling a Java Program or Class
	Running a Java Program

