Module 11

Collections and lterators

Adapted from Absolute Java, Rose Williams, Binghamton University

Parameterized Classes and Generics

Beginning with version 5.0, Java allows class and
method definitions that include parameters for types

Such definitions are called generics

Generic programming with a type parameter
enables code to be written that applies to any
class

These classes that have type parameters are
called parameterized class or generic definitions,
or, simply, generics

Collection is a parameterized interface

It has a parameter, denoted by Base Type, that can
be replaced by any reference type.

Java-11-2

Parameterized Classes and Generics

A type parameter can have any reference type (i.e., any class
type) plugged in for the type parameter

When a specific type is plugged in, this produces a specific class
type or method

Traditionally, a single uppercase letter is used for a type
parameter, but any non-keyword identifier may be used

The ArrayList and Vector classes discussed here have a type
parameter for the base type

For example, the type parameter of ArrayList can be
replaced by any reference type to obtain a class for
ArrayLists with the specified base type

Arraylist Vector

Java-11-3

Collections

A Java collection is any class that holds objects and
implements the Collection interface

For example, the ArrayList<T> class is a Java
collection class, and implements all the methods in
the Collection interface

Collections are used along with iterators

The Collection interface is the highest level of
Java's framework for collection classes

All of the collection classes discussed here can be
found in package java.util

Java-11-4

The Collection I .andscane

Display 16.1 The Collection Landscape

Collection<T>)

Set<T>

List<T>)

Implements

(AbstructCo'l'lect'ion<T>)

sxua“*a\dm\
Implements

SortedSet<T>) (AbstractSet<T>) C AbstractList<T>)

) /
-
°E’ ArraylList<T> Vector<T> GbstractSequentialList<T9
(%)
a
£
TreeSet<T> HashSet<T> LinkedList<T>
A single line between two boxes means
Interface) , , .
the lower class or interface is derived

from (extends) the higher one.

(Abstract Class) T is a type parameter for the type of
the elements stored in the collection.

Concrete Class

Java-11-5

Optional Operations

When an interface lists a method as
"optional,” it must still be implemented in a
class that implements the interface

The optional part means that it is permitted to
write a method that does not completely
implement its intended semantics

However, if a trivial implementation is given,
then the method body should throw an
UnsupportedOperationException

Java-11-6

Wildcards

Classes and interfaces in the collection
framework can have parameter type
specifications that do not fully specify the type
plugged in for the type parameter

Because they specify a wide range of

argument types, they are known as wildcards
public void method (String argl, ArrayList<?> arg2)

In the above example, the first argument is of
type String, while the second argument can
be an ArrayList<T> with any base type

Java-11-7

Wildcards

A bound can be placed on a wildcard
specifying that the type used must be an
ancestor type or descendent type of some
class or interface

The notation <? extends String>
specifies that the argument plugged in be an
object of any descendent class of String

The notation <? super String> specifies
that the argument plugged in be an object of
any ancestor class of String

Java-11-8

The Collection Framework

The Collection<T> interface describes the
basic operations that all collection classes
should implement

The method headings for these operations are
shown on the next several slides

Since an interface is a type, any method can
be defined with a parameter of type
Collection<T>

That parameter can be filled with an argument
that is an object of any class in the collection
framework

Java-11-9

Method Headings in the Collection<T>
Interface (1/10)

Display 16.2 Method Headings in the Collection<T> Interface

The Collection<T> interface is in the java.util package.
All the exception classes mentioned are unchecked exceptions, which means they are not required to be
caught in a catch block or declared in a throws clause.

All the exception classes mentioned are in the package java.lang and so do not require any import
statement.

Although not officially required by the interface, any class that implements the Collection<T> inter-
face should have at least two constructors: a no-argument constructor that creates an empty Collec-
tion<T> object, and a constructor with one parameter of type Collection<? extends T> that
creates a Collection<T> object with the same elements as the constructor argument. The interface does
not specify whether the copy produced by the one-argument constructor is a shallow copy or a deep copy
of its argument.

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

(continued)

Java-11- 10

Method Headings in the Collection<T>
Interface (2/10)

Display 16.2 Method Headings in the Collection<T> Interface

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals to
determine if target is in the calling object.
Throws a ClassCastException if the type of target is incompatible with the calling object

(optional).
Throws a NullPointerException if target is null and the calling object does not support null ele-

ments (optional).

(continued)

Java-11-11

Method Headings in the Collection<T>
Interface (3/10)

o

Display 16.2 Method Headings in the Collection<T> Interface

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. Foran ele-
ment in collectionOfTargets, this method uses element.equals to determine if element is in the
calling object.

Throws a ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).

Throws a NullPointerException if collectionOfTargets contains one or more null elements
and the calling object does not support null elements (optional).

Throws a NullPointerException if collectionOfTargets is null.

public boolean equals(Object other)

This is the equals of the collection, not the equals of the elements in the collection. Overrides the inher-
ited method equals. Although there are no official constraints on equals for a collection, it should be
defined as we have described in Chapter 7 and also to satisfy the intuitive notion of collections being
equal.

(continued)

Java-11-12

Method Headings in the Collection<T>
Interface (4/10)

Method Headings in the Collection<T> Interface

public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger.MAX_VALUE elements, returns Integer.MAX_VALUE.

Iterator<T> iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 16.2.)

public Object[] toArray()

Returns an array containing all of the elements in the calling object. If the calling object makes any guar-
antees as to what order its elements are returned by its iterator, this method must return the elements in
the same order.

The array returned should be a new array so that the calling object has no references to the returned
array. (You might also want the elements in the array to be clones of the elements in the collection. How-
ever, this is apparently not required by the interface, since library classes, such as Vector<T>, retum
arrays that contain references to the elements in the collection.)

(continued)

Java-11-13

Method Headings in the Collection<T>
Interface (5/10)

Display 16.2 Method Headings in the Collection<T> Interface

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not be the
type T in Collection<T>. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The argument a is used primarily to
specify the type of the array returned. The exact details are as follows:

The type of the returned array is that of a. If the elements in the calling object fit in the array a, then a is
used to hold the elements of the returned array; otherwise a new array is created with the same type as a.
If a has more elements than the calling object, the element in a immediately following the end of the cop-
ied elements is set to null.

If the calling object makes any guarantees as to what order its elements are returned by its iterator, this
method must return the elements in the same order. (Iterators are discussed in Section 16.2.)

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerExceptionif ais null.

(continued)

Java-11- 14

Method Headings in the Collection<T>
Interface (6/10)

Method Headings in the Collection<T> Interface

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in this
book. This entry is only here to make the definition of the Collection<T> interface complete. You can
safely ignore this entry until you go on to study hash codes in a more advanced book. In the meantime, if
you need to implement this method, have the method throw an UnsupportedOperationException.

The following methods are optional, which means they still must be implemented, but the implementa-
tion can simply throw an UnsupportedOperationException if, for some reason, you do not want to
give them a “real” implementation. An UnsupportedOperationException is a RunTimeException
and so is not required to be caught or declared in a throws clause.

(continued)

Java-11-15

Method Headings in the Collection<T>
Interface (7/10)

splay 16.2 Method Headings in the Collection<T> Interface

public boolean add(T element) (Optional)

Ensures that the calling object contains the specified element. Returns true if the calling object
changed as a result of the call. Retumns false if the calling object does not permit duplicates and already
contains element; also returns false if the calling object does not change for any other reason.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the class of element prevents it from being added to the calling object.
Throws a Nul1PointerException if element is null and the calling object does not support null
elements.

Throws an IllegalArgumentException if some other aspect of element prevents it from being
added to the calling object.

(continued)

Java-11-16

Method Headings in the Collection<T>
Interface (8/10)

Method Headings in the Collection<T> Interface

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if the call-
ing object changed as a result of the call; returns false otherwise. If the calling object changes during
this operation, its behavior is unspecified; in particular, its behavior is unspecified if collectionToAdd

is the calling object.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-

ments this interface.
Throws a ClassCastException if the class of an element of collectionToAdd prevents it from being

added to the calling object.
Throws a NullPointerException if collectionToAdd contains one or more null elements and the

calling object does not support null elements, or if collectionToAdd is null.
Throws an I1legalArgumentException if some aspect of an element of collectionToAdd prevents

it from being added to the calling object.

(continued)

Java-11-17

Method Headings in the Collection<T>
Interface (9/10)

Method Headings in the Collection<T> Interface

public boolean remove(Object element) (Optional)

Removes a single instance of the element from the calling object, if it is present. Returns true if the call-
ing object contained the element; returns false otherwise.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the type of element is incompatible with the calling object (optional).
Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also contained in collectionToRemove. Returns
true if the calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the types of one or more elements in collectionToRemove are
incompatible with the calling collection (optional).

Throws a NullPointerException if collectionToRemove contains one or more null elements and
the calling object does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

(continued)

Java-11- 18

Method Headings in the Collection<T>
Interface (10/10)

Method Headings in the Collection<T> Interface

public void clear() (Optional)

Removes all the elements from the calling object.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

public boolean retainAll(Collection<?> saveElements) (Optional)

Retains only the elements in the calling object that are also contained in the collection saveElements. In
other words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the types of one or more elements in saveElements are incompati-
ble with the calling object (optional).

Throws a NullPointerException if saveElements contains one or more null elements and the call-
ing object does not support null elements (optional).

Throws a NullPointerException if saveElements is null.

Java-11-19

Collection Relationships

There is a number of different predefined classes
that implement the Collection<T> interface

Programmer defined classes can implement it
also

A method written to manipulate a parameter of type
Collection<T> will work for all of these classes,
either singly or intermixed

There are two main interfaces that extend the
Collection<T> interface: The Set<T> interface
and the List<T> interface

Java-11- 20

Collection Relationships

Classes that implement the Set<T> interface
do not allow an element in the class to occur
more than once

The set<T> interface has the same method
headings as the Collection<T> interface,
but in some cases the semantics (intended
meanings) are different

Methods that are optional in the
Collection<T> interface are required in the
Set<T> interface

Java-11- 21

Collection Relationships

Classes that implement the List<T> interface have
their elements ordered as on a list

Elements are indexed starting with zero

A class that implements the List<T> interface
allows elements to occur more than once

The List<T> interface has more method
headings than the Collection<T> interface

Some of the methods inherited from the
Collection<T> interface have different
semantics in the List<T> interface

The ArrayList<T> class implements the
List<T> interface

Java-11- 22

Methods in the Set<T> Interface (1/10)

Methods in the Set<T> Interface

The Set<T> interface is in the java.util package.

The Set<T> interface extends the Collection<T> interface.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

All the exception classes mentioned are in the package java.lang and so do not require any import
statement.

Although not officially required by the interface, any class that implements the Set<T> interface should
have at least two constructors: a no-argument constructor that creates an empty Set<T> object, and a
constructor with one parameter of type Collection<? extends T> that creates a Set<T> object with
the same elements as the constructor argument.

(continued)

Java-11- 23

Methods in the Set<T> Interface (2/10)

Methods in the Set<T> Interface

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals to
determine if target is in the calling object.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerException if target is null and the calling object does not support null ele-
ments (optional).

(continued)

Java-11-24

Methods in the Set<T> Interface
(3/10)

6.3 Methods in the Set<T> Interface

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. Foran ele-
ment in collectionOfTargets, this method uses element.equals to determine if element is in the
calling object. If collectionOfTargets is itself a Set<T>, this is a test to see if collectionOfTar-
gets is a subset of the calling object.

Throws a ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).

Throws a NullPointerException if collectionOfTargets contains one or more null elements
and the calling object does not support null elements (optional).

Throws a NullPointerException if collectionOfTargets is null.

public boolean equals(Object other)

If the argument is a Set<T>, returns true if the calling object and the argument contain exactly the
same elements; otherwise returns false. If the argument is not a Set<T>, false is returned.

(continued)

Java-11- 25

Methods 1n the Set<T> Interface (4/10)

Methods in the Set<T> Interface

public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger.MAX_VALUE elements, returns Integer .MAX_VALUE.

Iterator<T> iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 16.2.)

public Object[] toArray()

Returns an array containing all of the elements in the calling object. A new array must be returned so that
the calling object has no references to the returned array.

(continued)

Java-11- 26

Methods 1n the Set<T> Interface
(5/10)

Methods in the Set<T> Interface

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not be the
type T in Collection<T>. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The argument a is used primarily to
specify the type of the array returned. The exact details are described in the table for the Collec-
tion<T> interface (Display 16.2).

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerExceptionifais null.

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in this
book. This entry is here only to make the definition of the Set<T> interface complete. You can safely
ignore this entry until you go on to study hash codes in a more advanced book. In the meantime, if you
need to implement this method, have it throw an UnsupportedOperationException.

(continued)

Java-11-27

Methods 1n the Set<T> Interface (6/10)

Display 16.3 Methods in the Set<T> Interface

As with the Collection<T> interface, the following methods are optional, which means they still must
be implemented, but the implementation can simply throw an UnsupportedOperationException if
for some reason you do not want to give them a “real” implementation. An UnsupportedOperation-
Exception is a RunTimeException and so is not required to be caught or declared in a throws
clause.

public boolean add(T element) (Optional)

If element is not already in the calling object, element is added to the calling object and true is
returned. If element is in the calling object, the calling object is unchanged and false is returned.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the class of element prevents it from being added to the set.
Throws a NullPointerException if element is null and the set does not support null elements.
Throws an I'1legalArgumentException if some other aspect of element prevents it from being
added to this set.

(continued)

Java-11- 28

Methods 1n the Set<T> Interface (7/10)

=4

C

Display 16.3 Methods in the Set<T> Interface

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if the call-
ing object changed as a result of the call; returns false otherwise. Thus, if collectionToAdd is a
Set<T>, then the calling object is changed to the union of itself with collectionToAdd.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the class of some element of collectionToAdd prevents it from
being added to the calling object.

Throws a Nul1lPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an I'l1legalArgumentException if some aspect of some element of collectionToAdd pre-
vents it from being added to the calling object.

(continued)

Java-11- 29

Methods 1n the Set<T> Interface (8/10)

®

Display 16.3 Methods in the Set<T> Interface

public boolean remove(Object element) (Optional)

Removes the element from the calling object, if it is present. Returns true if the calling object contained

the element; returns false otherwise.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-

ments this interface.
Throws a ClassCastException if the type of element is incompatible with the calling object

(optional).
Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

(continued)

Java-11- 30

Methods 1n the Set<T> Interface (9/10)

Methods in the Set<T> Interface

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also contained in collectionToRemove. Returns
true if the calling object was changed; otherwise returms false.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-

ments this interface.

Throws a ClassCastException if the types of one or more elements in collectionToRemove are
incompatible with the calling object (optional).

Throws a NullPointerException if the calling object contains a null element and collection-
ToRemove does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

(continued)

Java-11- 31

Methods 1n the Set<T> Interface (10/10)

6.3 Methods in the Set<T> Interface

public void clear() (Optional)

Removes all the elements from the calling object.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

public boolean retainAll(Collection<?> saveElements) (Optional)

Retains only the elements in the calling object that are also contained in the collection saveElements. In
other words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false. If the argu-
ment is itself a Set<T>, this changes the calling object to the intersection of itself with the argument.
Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the types of one or more elements in the calling object are incompat-
ible with saveElements (optional).

Throws a Nul1lPointerException if saveElements contains a null element and the calling object
does not support null elements (optional).

Throws a NullPointerException if saveElements is null.

Java-11- 32

Methods 1n the List<T>
Interface (1/16)

L Methods in the List<T> Interface

The List<T> interface is in the java.util package.

The List<T> interface extends the Collection<T> interface.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

All the exception classes mentioned are in the package java. lang and so do not require any import
statement.

Although not officially required by the interface, any class that implements the List<T> interface should
have at least two constructors: a no-argument constructor that creates an empty List<T> object, and a
constructor with one parameter of type Collection<? extends T> that creates a List<T> object
with the same elements as the constructor argument. If the argument imposes an ordering on its ele-
ments, then the List<T> created should preserve this ordering.

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

(continued)

Java-11-33

Methods 1n the List<T> Interface
(2/16)

16., Methods in the List<T> Interface

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals to
determine if target is in the calling object.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerException if targetis null and the calling object does not support null ele-
ments (optional).

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. Foran ele-
ment in collectionOfTargets, this method uses element.equals to determine if element is in the
calling object. The elements need not be in the same order or have the same multiplicity in collection-
OfTargets and in the calling object.

Throws a ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).

Throws a Nul1lPointerException if collectionOfTargets contains one or more null elements
and the calling object does not support null elements (optional).

Throws a Nul1lPointerException if collectionOfTargets is null.

(continued)

Java-11- 34

Methods 1n the List<T> Interface
(3/16)

Methods in the List<T> Interface

public boolean equals(Object other)

If the argument is a List<T>, returns true if the calling object and the argument contain exactly the same
elements in exactly the same order; otherwise returns false. If the argument is nota List<T>, false s

returned.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger .MAX_VALUE elements, returns Integer.MAX_VALUE.

Iterator<T> iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 16.2.)

(continued)

Java-11- 35

Methods 1n the List<T> Interface
(4/16)

Methods in the List<T> Interface

public Object[] toArray()

Returns an array containing all of the elements in the calling object. The elements in the returned array
are in the same order as in the calling object. A new array must be returned so that the calling object has
no references to the returned array.

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not be the
type T in Collection<T>. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The elements in the returned array
are in the same order as in the calling object. The argument a is used primarily to specify the type of the
array returned. The exact details are described in the table for the Collection<T> interface (Display
16.2).

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerExceptionifaisnull.

(continued)

Java-11- 36

Methods 1n the List<T> Interface
(5/16)

Methods in the List<T> Interface

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in
this book. This entry is here only to make the definition of the 1ist interface complete. You can safely
ignore this entry until you go on to study hash codes in a more advanced book. In the meantime, if you
need to implement this method, have it throw an UnsupportedOperationException.

As with the Collection<T> interface, the following methods are optional, which means they still must
be implemented, but the implementation can simply throw an UnsupportedOperationException if
for some reason you do not want to give them a “real” implementation. An UnsupportedOperation-
Exceptionisa RunTimeException and so is not required to be caught or declared in a throws
clause.

(continued)

Java-11-37

Methods 1n the List<T> Interface
(6/16)

/ 16., Methods in the List<T> Interface

public boolean addAl1l(Collection<? extends T> collectionToAdd) (Optional)

Adds all of the elements in collectionToAdd to the end of the calling object’s list. The elements are
added in the order they are produced by an iterator for collectionToAdd.

Throws an UnsupportedOperationException if the addA11l method is not supported by the calling
object.

Throws a ClassCastException if the class of an element in collectionToAdd prevents it from being
added to the calling object.

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an I1legalArgumentException if some aspect of an element in collectionToAdd prevents
it from being added to the calling object.

public boolean remove(Object element) (Optional)

Removes the first occurrence of element from the calling object’s list, if it is present. Returns true if the
calling object contained the element; returns false otherwise.

Throws a ClassCastException if the type of element is incompatible with the calling object (optional).
Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

Throws an UnsupportedOperationException if the remove method is not supported by the calling

ject.
objec (continued)

Java-11- 38

Methods in the List<T>
Interface (7/16)

ay 16.4 Methods in the List<T> Interface

public boolean add(T element) (Optional)

Adds element to the end of the calling object’s list. Normally returns true. Returns false if the opera-
tion failed, but if the operation failed, something is seriously wrong and you will probably get a run-time
error anyway.

Throws an UnsupportedOperationException if the add method is not supported by the calling object.
Throws a ClassCastException if the class of element prevents it from being added to the calling
object.

Throws a NullPointerException if element is null and the calling object does not support null
elements.

Throws an I1legalArgumentException if some aspect of element prevents it from being added to
the calling object.

(continued)

Java-11- 39

Methods 1n the List<T> Interface
(8/16)

Methods in the List<T> Interface

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also in collectionToRemove. Returns true if the
calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if the removeAll method is not supported by the call-
ing object.

Throws a ClassCastException if the types of one or more elements in the calling object are incompat-
ible with collectionToRemove (optional).

Throws a NuL1PointerException if the calling object contains one or more null elements and col-
lectionToRemove does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

public void clear() (Optional)

Removes all the elements from the calling object.
Throws an UnsupportedOperationException if the clear method is not supported by the calling object.

(continued)

Java-11-40

Methods in the List<T>
Interface (9/16)

Methods in the List<T> Interface

public boolean retainAll(Collection<?> saveElements) (Optional)

Retains only the elements in the calling object that are also in the collection saveElements. In other
words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if the retainAll method is not supported by the calling
object.

Throws a ClassCastException if the types of one or more elements in the calling object are incompat-
ible with saveElements (optional).

Throws a Nul1lPointerException if the calling object contains one or more null elements and
saveElements does not support null elements (optional).

Throws a Nul1lPointerException if the saveElements is null.

The following methods are in the List<T> interface but were not in the Collection<T> interface.
Those that are optional are noted.

(continued)

Java-11-41

Methods 1n the List<T> Interface
(10/16)

Methods in the List<T> Interface

public void add(int index, T newElement) (Optional)

Inserts newElement in the calling object’s list at location index. The old elements at location index
and higher are moved to higher indices.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index <= size()

Throws an UnsupportedOperationException if this add method is not supported by the calling object.
Throws a ClassCastException if the class of newElement prevents it from being added to the calling
object.

Throws a NullPointerException if newElement is null and the calling object does not support
null elements.

Throws an IllegalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

(continued)

Java-11-42

Methods 1n the List<T> Interface
(11/16)

.., Methods in the List<T> Interface

public boolean addAll(int index,
Collection<? extends T> collectionToAdd) (Optional)

Inserts all of the elements in collectionToAdd to the calling object’s list starting at location index.
The old elements at location index and higher are moved to higher indices. The elements are added in
the order they are produced by an iterator for collectionToAdd.

Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index <= size()

Throws an UnsupportedOperationException if the addA11l method is not supported by the calling
object.

Throws a ClassCastException if the class of one of the elements of collectionToAdd prevents it
from being added to the calling object.

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an I1legalArgumentException if some aspect of one of the elements of collectionToAdd
prevents it from being added to the calling object.

(continued)

Java-11-43

Methods 1n the List<T> Interface
(12/16)

6., Methods in the List<T> Interface

public T get(int index)

Returns the object at position index.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index < size()

public T set(int index, T newElement) (Optional)

Sets the element at the specified index to newElement. The element previously at that position is
returned.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index < size()

Throws an UnsupportedOperationException if the set method is not supported by the calling object.
Throws a ClassCastException if the class of newElement prevents it from being added to the calling
object.

Throws a Nul1PointerException if newElement is null and the calling object does not support
null elements.

Throws an I1legalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

(continued)

Java-11-44

Methods in the List<T>
Interface (13/16)

. Methods in the List<T> Interface

public T remove(int index) (Optional)

Removes the element at position index in the calling object. Shifts any subsequent elements to the left
(subtracts one from their indices). Returns the element that was removed from the calling object.
Throws an UnsupportedOperationException if the remove method is not supported by the calling

object.
Throws an IndexOutOfBoundsException if index does not satisfy:

0 <= index < size()
(continued)

Java-11-45

Methods 1n the List<T> Interface
(14/16)

isplay 16.4, Methods in the List<T> Interface

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerException if target is null and the calling object does not support null ele-
ments (optional).

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerException if targetis null and the calling object does not support null ele-
ments (optional).

(continued)

Java-11- 46

Methods 1n the List<T> Interface
(15/16)

Methods in the List<T> Interface

public List<T> subList(int fromIndex, int toIndex)

Returns a view of the elements at locations fromIndex to toIndex of the calling object; the object at
fromIndex is included; the object, if any, at toIndex is not included. The view uses references into the
calling object; so, changing the view can change the calling object. The returned object will be of type
List<T> but need not be of the same type as the calling object. Returns an empty List<T> if fromIn-

dex equals toIndex.
Throws an IndexOutOfBoundsException if fromIndex and toIndex do not satisfy:

0 <= fromIndex <= tolndex <= size()

(continued)

Java-11-47

Methods 1n the List<T> Interface
(16/16)

Methods in the List<T> Interface

ListIterator<T> listIterator()

Returns a list iterator for the calling object. (Iterators are discussed in Section 16.2.)

ListIterator<T> listIterator(int index)

Returns a list iterator for the calling object starting at index. The first element to be returned by the iter-
ator is the one at index. (Iterators are discussed in Section 16.2.)
Throws an IndexOutOfBoundsException if index does not satisfy:

0 <= index <= size()

Java-11-48

Dealing with All Those Exceptions

The tables of methods for the various collection

interfaces and classes indicate that certain exceptions
are thrown

These are unchecked exceptions, so they are useful
for debugging, but need not be declared or caught

In an existing collection class, they can be viewed as
run-time error messages

In a derived class of some other collection class, most
or all of them will be inherited

In a collection class defined from scratch, if it is to
implement a collection interface, then it should throw
the exceptions that are specified in the interface

Java-11-49

Concrete Collections Classes

The concrete class HashSet<T> implements the Set<T>
interface, and can be used if additional methods are not needed

The HashSet<T> class implements all the methods in the
Set<T> interface, and adds only constructors

The HashSet<T> class is implemented using a hash table

The ArrayList<T> and Vector<T> classes implement the
List<T> interface, and can be used if additional methods are
not needed

Both the ArrayList<T> and Vector<T> interfaces
implement all the methods in the interface List<T>

Either class can be used wh_en a List<T> with efficient
random access to elements is needed

Java-11- 50

Concrete Collections Classes

The concrete class LinkedList<T> IS a concrete
derived class of the abstract class
AbstractSequentiallList<T>

When efficient sequential movement through a list
IS needed, the LinkedList<T> class should be
used

The interface SortedSet<T> and the concrete class
TreeSet<T> are designed for implementations of the
Set<T> interface that provide for rapid retrieval of
elements

The implementation of the class is similar to a
binary tree, but with ways to do inserting that keep
the tree balanced

Java-11- 51

Methods 1n the Classes ArrayList<T>
and Vector<T> (1/15)

Methods in the Classes ArrayList<T> and Vector<T>

The ArrayList<T> and Vector<T> classes and the Iterator<T>and ListIterator<T> interfaces
are in the java.util package.

All the exception classes mentioned are unchecked exceptions, which means they are not required to be
caughtin a catch block or declared in a throws clause. (If you have not yet studied exceptions, you can
consider the exceptions to be run-time error messages.)

NoSuchElementException is in the java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java.lang and so do not require any import statement.

In some situations where we specify throwing an IndexOutOfBoundsException, the class Vector<T>
actually throws an ArrayIndexOutOfBoundsException.

(continued)

Java-11- 52

Methods 1n the Classes ArrayList<T>
and Vector<T> (2/15)

lay 16.6 Methods in the Classes ArraylList<T> and Vector<T>

public ArrayList(Collection<? extends T>)

Creates a ArrayList<T> that contains all the elements of the collection c in the same order as they have
in c. In other words, the elements have the same index in the ArrayList<T> created as they do in c. This
is not quite a true copy constructor because it does not preserve capacity. The capacity of the created list
will be c.size(), not c.capacity.

The ArrayList<T> created is only a shallow copy of the collection argument. The ArrayList<T> cre-
ated contains references to the elements in c (not references to clones of the elements in c).

Throws a NuL1lPointerException if cis null.

public Vector(int initialCapacity)

Creates an empty vector with the specified initial capacity. When the vector needs to increase its capacity,
the capacity doubles.
Throws an I1legalArgumentException if initialCapacity is negative.

public Vector()

Creates an empty vector with an initial capacity of 10. When the vector needs to increase its capacity, the
capacity doubles.

(continued)

Java-11- 53

Methods 1n the Classes ArrayList<T>
and Vector<T> (3/15)

Methods in the Classes ArrayList<T> and Vector<T>

public ArrayList(int initialCapacity)

Creates an empty ArrayList<T> with the specified initial capacity. When the ArrayList<T> needs to
increase its capacity, the capacity doubles.
Throws an I1legalArgumentException if initialCapacity is negative.

public ArrayList()

Creates an empty ArrayList<T> with an initial capacity of 10. When the ArrayList<T> needs to
increase its capacity, the capacity doubles.

(continued)

Java-11- 54

Methods 1n the Classes ArrayList<T>
and Vectoxr<T> (4/15)

lay 16.6 Methods in the Classes ArraylList<T> and Vector<T>

public Vector(Collection<? extends T> c)

Creates a vector that contains all the elements of the collection c in the same order as they have in c. In
other words, the elements have the same index in the vector created as they do in c. This is not quite a
true copy constructor because it does not preserve capacity. The capacity of the created vector will be
c.size(), not c.capacity.

The vector created is only a shallow copy of the collection argument. The vector created contains refer-
ences to the elements in c (not references to clones of the elements in c).

Throws a NullPointerException if cis null.

public Vector(int initialCapacity, int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment. When the vector
needs to grow, it will add room for capacityIncrement more items.

Throws an I1legalArgumentException if initialCapacity is negative.

(ArrayList<T> does not have a corresponding constructor.)

(continued)

Java-11- 55

Methods 1n the Classes ArrayList<T>
and Vector<T> (5/1))

Methods in the Classes ArrayList<T> and Vector<T>

public T set(int index, T newElement)

Sets the element at the specified index to newElement. The element previously at that position is
returned. If you draw an analogy to an array a, this is analogous to setting a[index] to the value new-
Element. The index must be a value greater than or equal to @ and strictly less than the current size of
the list.

Throws an IndexOutOfBoundsException if the index is not in this range.

public T get(int index)

Returns the element at the specified index. This is analogous to returming a[index] for an array a. The
index must be a value greater than or equal to @ and less than the current size of the calling object.
Throws an IndexQutOfBoundsException if the index is not in this range.

(continued)

Java-11- 56

Methods 1n the Classes ArrayList<T>
and Vector<T> (6/15)

Methods in the Classes ArrayList<T> and Vector<T>

public boolean add(T newElement)

Adds newElement to the end of the calling object’s list and increases its size by 1. The capacity of the
calling object is increased if that is required. Returns true if the add was successful. This method is often
used as if it were a void method.

public void add(int index, T newElement)

Inserts newElement as an element in the calling object at the specified index and increases the size of
the calling object by one. Each element in the calling object with an index greater than or equal to index
is shifted upward to have an index that is one greater than the value it had previously.

The index must be a value greater than or equal to @ and less than or equal to the size of the calling
object (before this addition).

Throws an IndexOutOfBoundsException if the index is not in the prescribed range.

Note that you can use this method to add an element after the last current element. The capacity of the
calling object is increased if that is required.

(continued)

Java-11- 57

Methods 1n the Classes ArrayList<T>
and Vectoxr<T> (7/15)

> Methods in the Classes ArrayList<T> and Vector<T>

public boolean addAl1(Collection<? extends T> c)

Appends all the elements in ¢ to the end of the elements in the calling object in the order that they are
enumerated by a c iterator. The behavior of this method is not guaranteed if the collection c is the calling
object or any collection including the calling object either directly or indirectly.

Throws an NullPointerException if cis null.

public boolean addAll(int index, Collection<? extends T> c)

Inserts all the elements in ¢ into the calling object starting at position index. Elements are inserted in the
order that they are enumerated by a c iterator. Elements previously at positions index or higher are
shifted to higher numbered positions.

Throws an IndexOutOfBoundsException if index is not both greater than or equal to zero and less

than size().
Throws an NullPointerException if cisnull.

(continued)

Java-11- 58

Methods 1n the Classes ArrayList<T>
and Vector<T> (8/15)

Methods in the Classes ArrayList<T> and Vector<T>

public T remove(int index)

Deletes the element at the specified index and returns the element deleted. The size of the calling object is
decreased by 1. The capacity of the calling object is not changed. Each element in the calling object with an
index greater than or equal to index is decreased to have an index that is I less than the value it had previ-

ously.
The index must be a value greater than or equal to © and less than the size of the calling object (before this

removal).
Throws an IndexOutOfBoundsException if the index is not in this range.

(continued)

Java-11- 59

Methods 1n the Classes ArrayList<T>
and Vector<T> (9/15)

Methods in the Classes ArraylList<T> and Vector<T>

public boolean remove(Object theElement)

Removes the first occurrence of theElement from the calling object. If theElement is found in the call-
ing object, then each element in the calling object with an index greater than or equal to theElement's
index is decreased to have an index that is one less than the value it had previously. Returns true if
theElement was found (and removed). Returns false if theElement was not found in the calling
object. If the element was removed, the size is decreased by one. The capacity is not changed.

protected void removeRange(int fromIndex, int tolIndex)

Removes all elements with index greater than or equal to fromIndex and strictly less than toIndex. Be
sure to note that this method is protected, not public.

public void clear()
Removes all elements from the calling object and sets its size to zero.

(continued)

Java-11- 60

Methods 1n the Classes ArrayList<T>
and Vectoxr<T> (10/15)

Methods in the Classes ArrayList<T> and Vector<T>

public boolean isEmpty()

Returns true if the calling object is empty (that is, has size 0); otherwise returns false.

public boolean contains(Object target)

Returns true if target is an element of the calling object; otherwise returns false. Uses the method
equals of the object target to test for equality.

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

(continued)

Java-11- 61

Methods 1n the Classes ArrayList<T>
and Vectoxr<T> (11/15)

Methods in the Classes ArrayList<T> and Vector<T>

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

public Iterator<T> iterator()

Returns an iterator for the calling object.

public ListIterator<T> listIterator()

Returns a ListIterator<T> for the calling object.

(continued)

Java-11- 62

Methods 1n the Classes ArrayList<T>
and Vectoxr<T> (12/15)

Methods in the Classes ArrayList<T> and Vector<T>

ListIterator<T> listIterator(int index)

Returns a list iterator for the calling obiject starting at index. The first element to be returned by the iter-
ator is the one at index.
Throws an IndexOutOfBoundsException if index does not satisfy:

0 <= index <= size()

public Object[] toArray()

Returns an array containing all of the elements in the calling object. The elements of the array are indexed
the same as in the calling object.

(continued)

Java-11- 63

Methods 1n the Classes ArrayList<T>
and Vectoxr<T> (13/15)

Methods in the Classes Arraylist<T> and Vector<T>

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not be the
type T in Collection<T>. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The elements of the array are indexed
the same as in the calling object.

The argument a is used primarily to specify the type of the array returned. The exact details are as fol-
lows:

The type of the returned array is that of a. If the collection fits in the array a, then a is used to hold the
elements of the returned array; otherwise a new array is created with the same type as a.

If a has more elements than the calling object, then the element in a immediately following the end of the
elements copied from the calling object are set to null.

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerException if ais null.

(continued)

Java-11- 64

Methods 1n the Classes ArrayList<T>
and Vectoxr<T> (14/15)

Methods in the Classes ArrayList<T> and Vector<T>

public int size()

Returns the number of elements in the calling object.

public int capacity()

Returns the current capacity of the calling object.

public void ensureCapacity(int newCapacity)

Increases the capacity of the calling object to ensure that it can hold at least newCapacity elements.
Using ensureCapacity can sometimes increase efficiency, but its use is not needed for any other rea-
son.

public void trimToSize()
Trims the capacity of the calling object to be the calling object’s current size. This is used to save storage.

(continued)

Java-11- 65

Methods 1n the Classes ArrayList<T>
and Vectoxr<T> (15/15)

Methods in the Classes ArrayList<T> and Vector<T>

public Object clone()

Returns a shallow copy of the calling object.

Java-11- 66

Differences Between
ArrayList<T> and Vector<T>

For most purposes, the ArrayList<T> and
Vector<T> are equivalent
The Vectoxr<T> class is older, and had to be

retrofitted with extra method names to make it
fit into the collection framework

The ArrayList<T> class is newer, and was
created as part of the Java collection
framework

The ArrayList<T> class is supposedly more
efficient than the Vector<T> class also

Java-11- 67

Omitting the <T>

When the <T> or corresponding class name
Is omitted from a reference to a collection
class, this is an error for which the compiler
may or may not issue an error message
(depending on the detalils of the code), and
even If it does, the error message may be
quite strange

Look for a missing <T> or <ClassName>
when a program that uses collection classes

gets a strange error message or doesn't run
correctly

Java-11- 68

A Peek at the Map Framework

The Java map framework deals with collections of
ordered pairs

For example, a key and an associated value

Obijects in the map framework can implement
mathematical functions and relations, so can be used
to construct database classes

The map framework uses the Map<T> interface, the
AbstractMap<T> class, and classes derived from
the AbstractMap<T> class

Java-11- 69

Iterators

An iterator is an object that is used with a
collection to provide sequential access to the
collection elements

This access allows examination and possible
modification of the elements

An iterator imposes an ordering on the
elements of a collection even if the collection
itself does not impose any order on the
elements it contains

If the collection does impose an ordering on its
elements, then the iterator will use the same
ordering

Java-11- 70

The Iterator<T> Interface

Java provides an Iterator<T> interface

Any object of any class that satisfies the
Iterator<T> interface is an Iterator<T>

An Iterator<T> does not stand on its own

It must be associated with some collection
object using the method iterator

If c is an instance of a collection class (e.g.,
ArrayList<String>), the following obtains
an iterator for c:

Iterator iteratorForC = c.iterator () ;

Java-11-71

Methods in the Iterator<T>
Interface (1 of 2)

Methods in the Iterator<T> Interface

The Iterator<T> interface is in the java.util package.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

NoSuchElementException isin the java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java.lang and so do not require any import statement.

public T next()

Returns the next element of the collection that produced the iterator.
Throws a NoSuchElementException if there is no next element.

(continued)

Java-11-72

Methods in the Iterator<T>
Interface (2 of 2)

Methods in the Iterator<T> Interface

public boolean hasNext()

Returns true if next () has not yet returned all the elements in the collection; returns false otherwise.

public void remove() (Optional)

Removes from the collection the last element returned by next.

This method can be called only once per call to next. If the collection is changed in any way, other than
by using remove, the behavior of the iterator is not specified (and thus should be considered unpredict-
able).

Throws I1legalStateException if the next method has not yet been called, or the remove method
has already been called after the last call to the next method.

Throws an UnsupportedOperationException if the remove operation is not supported by this
Iterator<Ts>.

Java-11-73

Using an Iterator with a HashSet<T>
Object

A HashSet<T> object imposes no order on the
elements it contains

However, an iterator will impose an order on the
elements in the hash set

That is, the order in which they are produced by
next ()

Although the order of the elements so produced may
be duplicated for each program run, there is no
requirement that this must be the case

Java-11-74

An Iterator (1 of 3)

Display 16.8 An Iterator

~N o B W (]

0]

10

11

import java.util.HashSet;
import java.util.Iterator;

public class HashSetIteratorDemo

{

public static void main(String[] args)

{
HashSet<String> s = new HashSet<String>();

s.add("health");
s.add("love™);
s.add("money");

System.out.println("The set contains:");

(continued)

Java-11-75

An Iterator (2 of 3)

An Iterator

12 Iterator<String> 1 = s.iterator();
13 while (i.hasNext())
14 System.out.println(i.next());
15 i.remove();
16 System.out.println();
17 System.out.println("The set now contains:"); . .
You cannot “reset” an
18 S, el i;erdator to tf;@i@gm;mg.
19 while (i.hasNext()) o oagfc;om ;h@m o,
20 System.out.println(i.next());)_/OU creave anotner
iterator.
21 System.out.println("End of program.™);
22 }
23}

(continued)

Java-11- 76

An Iterator (3 of 3)

Display 16.8 An Iterator

SAMPLE DIALOGUE

Ve SEE EerEze: The HashSet<T> object does not order the

(LD elements it contains, but the iterator imposes an
love order on the elements.
health

The set now contains:
money

love

End of program.

Java-11-77

For-Each Loops as Iterators

Although it is not an iterator, a for-each

loop can serve the same purpose as an
iterator

A for-each loop can be used to cycle
through each element in a collection

For-each loops can be used with any of
the collections discussed here

Java-11-78

For-Each Loops as Iterators (1/2)

display 16.9 For-Each Loops as Iterators

N

~N Oy bW

10

11

import java.util.HashSet;
import java.util.Iterator;

public class ForEachDemo

{

public static void main(String[] args)

{
HashSet<String> s = new HashSet<String>();

s.add("health™);
s.add("love");
s.add("money");

System.out.println("The set contains:");

(continued)

Java-11- 79

For-Each Loops as Iterators (2/2)

For-Each Loops as Iterators

12
13
14
15
16
17

18

19
20

21
22

23
24
25

String last = null;
for (String e : s)
{
last = e;
System.out.println(e);
}

s.remove(last);

System.out.println();
System.out.println("The set now contains:");

for (String e : s)
System.out.println(e);

System.out.println("End of program.");

The output is the same as in Dieplay 10.5.

Java-11- 80

The ListIterator<T> Interface

The ListIteratoxr<T> interface extends
the Iterator<T> interface, and is designed
to work with collections that satisfy the
List<T> interface

A ListIterator<T> has all the methods
that an Iterator<T> has, plus additional
methods

A ListIterator<T> can move in either
direction along a list of elements

A ListIterator<T> has methods, such as
set and add, that can be used to modify
elements

Java-11- 81

Methods in the ListIterator<T>
Interface (1 of 4)

Methods in the ListIterator<T> Interface

The ListIterator <T> interfaceis in the java.util package.

The cursor position is explained in the text and in Display 16.11.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

NoSuchElementExceptionisinthe java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java. lang and so do not require any import statement.

public T next()

Returns the next element of the list that produced the iterator. More specifically, returns the element
immediately after the cursor position.
Throws a NoSuchElementException if there is no next element.

(continued)

Java-11- 82

Methods in the ListIterator<T>
Interface (2 of 4)

Methods in the ListIterator<T> Interface

public T previous()

Returns the previous element of the list that produced the iterator. More specifically, returns the element
immediately before the cursor position.
Throws a NoSuchElementException if there is no previous element.

public boolean hasNext()

Returns true if there is a suitable element for next () to return; returns false otherwise.

public boolean hasPrevious()

Returns true if there is a suitable element for previous () to return; returns false otherwise.

public int nextIndex()

Returns the index of the element that would be returned by a call to next (). Returns the list size if the
cursor position is at the end of the list.

(continued)

Java-11- 83

Methods in the ListIterator<T>
Interface (3 of 4)

lay 16,10 Methods in the ListIterator<T> Interface

public int previousIndex()

Returns the index that would be returned by a call to previous (). Returns —1 if the cursor position is at
the beginning of the list.

public void add(T newElement) (Optional)

Inserts newElement at the location of the iterator cursor (that is, before the value, if any, that would be
returned by next () and after the value, if any, that would be returned by previous()).

Cannot be used if there has been a call to add or remove since the last call to next () or previous().
Throws IllegalStateException if neither next () nor previous() has been called, or the add or
remove method has already been called after the last call to next() or previous().

Throws an UnsupportedOperationException if the remove operation is not supported by this Itera-
tor<T>.

Throws a ClassCastException if the class of newElement prevents it from being added.

Throws an I1legalArgumentException if some property other than the class of newElement pre-
vents it from being added.

(continued)

Java-11- 84

Methods in the ListIterator<T>
Interface (4 of 4)

Methods in the ListIterator<T> Interface

public void remove() (Optional)

Removes from the collection the last element returned by next() or previous().

This method can be called only once per call to next() or previous().

Cannot be used if there has been a call to add or remove since the last call to next () or previous().
Throws I1legalStateException if neither next () nor previous() has been called, or the add or
remove method has already been called after the last call to next () or previous().

Throws an UnsupportedOperationException if the remove operation is not supported by this
Iterator<T>.

public void set(T newElement) (Optional)

Replaces the last element returned by next() or previous() with newElement.

Cannot be used if there has been a call to add or remove since the last call to next () or previous().
Throws an UnsupportedOperationException if the set operation is not supported by this Itera-
tor<T>.

Throws I1legalStateException if neither next () nor previous() has been called, or the add or
remove method has been called since the last call to next () or previous().

Throws an ClassCastException if the class of newElement prevents it from being added.

Throws an I1legalArgumentException if some property other than the class of newElement pre-
vents it from being added.

Java-11- 85

The ListIterator<T> Cursor

Every ListIterator<T> has a position marker known as the
cursor

If the list has n elements, they are numbered by indices 0
through n-1, but there are n+1 cursor positions

When next () is invoked, the element immediately following
the cursor position is returned and the cursor is moved
forward one cursor position

When previous () is invoked, the element immediately
before the cursor position is returned and the cursor is
moved back one cursor position

Java-11- 86

ListIterator<T> Cursor Positions

ListIterator<T> Cursor Positions

C List

element 0 element 1 element 2 element n-1

AT YT

Cursor positions
The default initial cursor position is the leftmost one.

Java-11- 87

next and previous Can Return a
Reference

Theoretically, when an iterator operation
returns an element of the collection, it might
return a copy or clone of the element, or it
might return a reference to the element

lterators for the standard predefined
collection classes, such as ArrayList<T>
and HashSet<T>, actually return references

Therefore, modifying the returned value will
modify the element in the collection

Java-11- 88

An Iterator Returns a Reference (1/4)

Display 16.12 An Iterator Returns a Reference

1 import java.util.Arraylist; The class Date is defined in Display 4.13, but you can
2 import java.util.Iterator; easily guess all you need to know about Date for this
example.

3 public class IteratorReferenceDemo

4

5 public static void main(String[] args)

6 {

7 ArraylList<Date> birthdays = new ArraylList<Date>();
8 birthdays.add(new Date(1l, 1, 1990));

9 birthdays.add(new Date(2, 2, 1990));

10 birthdays.add(new Date(3, 3, 1990));

11 System.out.println("The 1list contains:");

(continued)

Java-11- 89

An Iterator Returns a Reference (2/4)

An Iterator Returns a Reference

12 Iterator<Date> i = birthdays.iterator();

13 while (i.hasNext())

14 System.out.println(i.next());

15 i = birthdays.iterator();

16 Date d = null; //To keep the compiler happy.
17 System.out.println("Changing the references.");
18 while (i.hasNext())

19 {

20 d = i.next();

21 d.setDate(4, 1, 1990);

22 }

(continued)

Java-11- 90

An Iterator Returns a Reference (3/4)

An Iterator Returns a Reference

23 System.out.println("The list now contains:");
24 1 = birthdays.iterator();

25 while (i.hasNext())

26 System.out.println(i.next());

27 System.out.println("April fool!");

28 }

29 }

(continued)

Java-11-91

An Iterator Returns a Reference (4/4)

An Iterator Returns a Reference

SAMPLE DIALOGUE

The 1list contains:
January 1, 1990
February 2, 1990

March 3, 1990

Changing the references.
The 1ist now contains:
April 1, 1990

April 1, 1990

April 1, 1990

April fool!

Java-11-92

Defining Your Own Iterator Classes

There is usually little need for a programmer defined
Iterator<T> or ListIterator<T> class

The easiest and most common way to define a
collection class is to make it a derived class of one of
the library collection classes

By doing this, the iterator () and
listIterator () methods automatically become
available to the program

If a collection class must be defined in some other
way, then an iterator class should be defined as an
inner class of the collection class

Java-11-93

	Module 11
	Parameterized Classes and Generics
	Slide 3
	Collections
	The Collection Landscape
	Optional Operations
	Wildcards
	Slide 8
	The Collection Framework
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Collection Relationships
	Slide 21
	Slide 22
	Methods in the Set<T> Interface (1/10)
	Methods in the Set<T> Interface (2/10)
	Methods in the Set<T> Interface (3/10)
	Methods in the Set<T> Interface (4/10)
	Methods in the Set<T> Interface (5/10)
	Methods in the Set<T> Interface (6/10)
	Methods in the Set<T> Interface (7/10)
	Methods in the Set<T> Interface (8/10)
	Methods in the Set<T> Interface (9/10)
	Methods in the Set<T> Interface (10/10)
	Methods in the List<T> Interface (1/16)
	Methods in the List<T> Interface (2/16)
	Methods in the List<T> Interface (3/16)
	Methods in the List<T> Interface (4/16)
	Methods in the List<T> Interface (5/16)
	Methods in the List<T> Interface (6/16)
	Methods in the List<T> Interface (7/16)
	Methods in the List<T> Interface (8/16)
	Methods in the List<T> Interface (9/16)
	Methods in the List<T> Interface (10/16)
	Methods in the List<T> Interface (11/16)
	Methods in the List<T> Interface (12/16)
	Methods in the List<T> Interface (13/16)
	Methods in the List<T> Interface (14/16)
	Methods in the List<T> Interface (15/16)
	Methods in the List<T> Interface (16/16)
	Dealing with All Those Exceptions
	Concrete Collections Classes
	Slide 51
	Methods in the Classes ArrayList<T> and Vector<T> (1/15)
	Methods in the Classes ArrayList<T> and Vector<T> (2/15)
	Methods in the Classes ArrayList<T> and Vector<T> (3/15)
	Methods in the Classes ArrayList<T> and Vector<T> (4/15)
	Methods in the Classes ArrayList<T> and Vector<T> (5/15)
	Methods in the Classes ArrayList<T> and Vector<T> (6/15)
	Methods in the Classes ArrayList<T> and Vector<T> (7/15)
	Methods in the Classes ArrayList<T> and Vector<T> (8/15)
	Methods in the Classes ArrayList<T> and Vector<T> (9/15)
	Methods in the Classes ArrayList<T> and Vector<T> (10/15)
	Methods in the Classes ArrayList<T> and Vector<T> (11/15)
	Methods in the Classes ArrayList<T> and Vector<T> (12/15)
	Methods in the Classes ArrayList<T> and Vector<T> (13/15)
	Methods in the Classes ArrayList<T> and Vector<T> (14/15)
	Methods in the Classes ArrayList<T> and Vector<T> (15/15)
	Differences Between ArrayList<T> and Vector<T>
	Omitting the <T>
	A Peek at the Map Framework
	Iterators
	The Iterator<T> Interface
	Methods in the Iterator<T> Interface (1 of 2)
	Methods in the Iterator<T> Interface (2 of 2)
	Using an Iterator with a HashSet<T> Object
	An Iterator (1 of 3)
	An Iterator (2 of 3)
	An Iterator (3 of 3)
	For-Each Loops as Iterators
	For-Each Loops as Iterators (1/2)
	For-Each Loops as Iterators (2/2)
	The ListIterator<T> Interface
	Methods in the ListIterator<T> Interface (1 of 4)
	Methods in the ListIterator<T> Interface (2 of 4)
	Methods in the ListIterator<T> Interface (3 of 4)
	Methods in the ListIterator<T> Interface (4 of 4)
	The ListIterator<T> Cursor
	ListIterator<T> Cursor Positions
	next and previous Can Return a Reference
	An Iterator Returns a Reference (1/4)
	An Iterator Returns a Reference (2/4)
	An Iterator Returns a Reference (3/4)
	An Iterator Returns a Reference (4/4)
	Defining Your Own Iterator Classes

