
Adapted from Absolute Java, Rose Williams, Binghamton University

Module 11

Collections and Iterators

Java-11- 2

Parameterized Classes and Generics

 Beginning with version 5.0, Java allows class and
method definitions that include parameters for types
 Such definitions are called generics
 Generic programming with a type parameter

enables code to be written that applies to any
class

 These classes that have type parameters are
called parameterized class or generic definitions,
or, simply, generics

 Collection is a parameterized interface
 It has a parameter, denoted by Base_Type, that can

be replaced by any reference type.

Java-11- 3

Parameterized Classes and Generics

 A type parameter can have any reference type (i.e., any class
type) plugged in for the type parameter

 When a specific type is plugged in, this produces a specific class
type or method

 Traditionally, a single uppercase letter is used for a type
parameter, but any non-keyword identifier may be used

 The ArrayList and Vector classes discussed here have a type
parameter for the base type
 For example, the type parameter of ArrayList can be

replaced by any reference type to obtain a class for
ArrayLists with the specified base type

 There are also ArrayList and Vector classes with no
parameter whose base type is Object
 These classes are left over from earlier versions of Java

Java-11- 4

Collections

 A Java collection is any class that holds objects and
implements the Collection interface
 For example, the ArrayList<T> class is a Java

collection class, and implements all the methods in
the Collection interface

 Collections are used along with iterators
 The Collection interface is the highest level of

Java's framework for collection classes
 All of the collection classes discussed here can be

found in package java.util

Java-11- 5

The Collection Landscape

Java-11- 6

Optional Operations

 When an interface lists a method as
"optional," it must still be implemented in a
class that implements the interface
 The optional part means that it is permitted to

write a method that does not completely
implement its intended semantics

 However, if a trivial implementation is given,
then the method body should throw an
UnsupportedOperationException

Java-11- 7

Wildcards

 Classes and interfaces in the collection
framework can have parameter type
specifications that do not fully specify the type
plugged in for the type parameter
 Because they specify a wide range of

argument types, they are known as wildcards
public void method(String arg1, ArrayList<?> arg2)

 In the above example, the first argument is of
type String, while the second argument can
be an ArrayList<T> with any base type

Java-11- 8

Wildcards

 A bound can be placed on a wildcard
specifying that the type used must be an
ancestor type or descendent type of some
class or interface
 The notation <? extends String>

specifies that the argument plugged in be an
object of any descendent class of String

 The notation <? super String> specifies
that the argument plugged in be an object of
any ancestor class of String

Java-11- 9

The Collection Framework

 The Collection<T> interface describes the
basic operations that all collection classes
should implement
 The method headings for these operations are

shown on the next several slides
 Since an interface is a type, any method can

be defined with a parameter of type
Collection<T>
 That parameter can be filled with an argument

that is an object of any class in the collection
framework

Java-11- 10

Method Headings in the Collection<T>
Interface (1/10)

Java-11- 11

Method Headings in the Collection<T>
Interface (2/10)

Java-11- 12

Method Headings in the Collection<T>
Interface (3/10)

Java-11- 13

Method Headings in the Collection<T>
Interface (4/10)

Java-11- 14

Method Headings in the Collection<T>
Interface (5/10)

Java-11- 15

Method Headings in the Collection<T>
Interface (6/10)

Java-11- 16

Method Headings in the Collection<T>
Interface (7/10)

Java-11- 17

Method Headings in the Collection<T>
Interface (8/10)

Java-11- 18

Method Headings in the Collection<T>
Interface (9/10)

Java-11- 19

Method Headings in the Collection<T>
Interface (10/10)

Java-11- 20

Collection Relationships

 There is a number of different predefined classes
that implement the Collection<T> interface
 Programmer defined classes can implement it

also
 A method written to manipulate a parameter of type
Collection<T> will work for all of these classes,
either singly or intermixed

 There are two main interfaces that extend the
Collection<T> interface: The Set<T> interface
and the List<T> interface

Java-11- 21

Collection Relationships

 Classes that implement the Set<T> interface
do not allow an element in the class to occur
more than once
 The Set<T> interface has the same method

headings as the Collection<T> interface,
but in some cases the semantics (intended
meanings) are different

 Methods that are optional in the
Collection<T> interface are required in the
Set<T> interface

Java-11- 22

Collection Relationships

 Classes that implement the List<T> interface have
their elements ordered as on a list
 Elements are indexed starting with zero
 A class that implements the List<T> interface

allows elements to occur more than once
 The List<T> interface has more method

headings than the Collection<T> interface
 Some of the methods inherited from the
Collection<T> interface have different
semantics in the List<T> interface

 The ArrayList<T> class implements the
List<T> interface

Java-11- 23

Methods in the Set<T> Interface (1/10)

Java-11- 24

Methods in the Set<T> Interface (2/10)

Java-11- 25

Methods in the Set<T> Interface
(3/10)

Java-11- 26

Methods in the Set<T> Interface (4/10)

Java-11- 27

Methods in the Set<T> Interface
(5/10)

Java-11- 28

Methods in the Set<T> Interface (6/10)

Java-11- 29

Methods in the Set<T> Interface (7/10)

Java-11- 30

Methods in the Set<T> Interface (8/10)

Java-11- 31

Methods in the Set<T> Interface (9/10)

Java-11- 32

Methods in the Set<T> Interface (10/10)

Java-11- 33

Methods in the List<T>
Interface (1/16)

Java-11- 34

Methods in the List<T> Interface
(2/16)

Java-11- 35

Methods in the List<T> Interface
(3/16)

Java-11- 36

Methods in the List<T> Interface
(4/16)

Java-11- 37

Methods in the List<T> Interface
(5/16)

Java-11- 38

Methods in the List<T> Interface
(6/16)

Java-11- 39

Methods in the List<T>
Interface (7/16)

Java-11- 40

Methods in the List<T> Interface
(8/16)

Java-11- 41

Methods in the List<T>
Interface (9/16)

Java-11- 42

Methods in the List<T> Interface
(10/16)

Java-11- 43

Methods in the List<T> Interface
(11/16)

Java-11- 44

Methods in the List<T> Interface
(12/16)

Java-11- 45

Methods in the List<T>
Interface (13/16)

Java-11- 46

Methods in the List<T> Interface
(14/16)

Java-11- 47

Methods in the List<T> Interface
(15/16)

Java-11- 48

Methods in the List<T> Interface
(16/16)

Java-11- 49

Dealing with All Those Exceptions

 The tables of methods for the various collection
interfaces and classes indicate that certain exceptions
are thrown
 These are unchecked exceptions, so they are useful

for debugging, but need not be declared or caught
 In an existing collection class, they can be viewed as

run-time error messages
 In a derived class of some other collection class, most

or all of them will be inherited
 In a collection class defined from scratch, if it is to

implement a collection interface, then it should throw
the exceptions that are specified in the interface

Java-11- 50

Concrete Collections Classes

 The concrete class HashSet<T> implements the Set<T>
interface, and can be used if additional methods are not needed
 The HashSet<T> class implements all the methods in the
Set<T> interface, and adds only constructors

 The HashSet<T> class is implemented using a hash table
 The ArrayList<T> and Vector<T> classes implement the
List<T> interface, and can be used if additional methods are
not needed
 Both the ArrayList<T> and Vector<T> interfaces

implement all the methods in the interface List<T>
 Either class can be used when a List<T> with efficient

random access to elements is needed

Java-11- 51

Concrete Collections Classes

 The concrete class LinkedList<T> is a concrete
derived class of the abstract class
AbstractSequentialList<T>
 When efficient sequential movement through a list

is needed, the LinkedList<T> class should be
used

 The interface SortedSet<T> and the concrete class
TreeSet<T> are designed for implementations of the
Set<T> interface that provide for rapid retrieval of
elements
 The implementation of the class is similar to a

binary tree, but with ways to do inserting that keep
the tree balanced

Java-11- 52

Methods in the Classes ArrayList<T>
and Vector<T> (1/15)

Java-11- 53

Methods in the Classes ArrayList<T>
and Vector<T> (2/15)

Java-11- 54

Methods in the Classes ArrayList<T>
and Vector<T> (3/15)

Java-11- 55

Methods in the Classes ArrayList<T>
and Vector<T> (4/15)

Java-11- 56

Methods in the Classes ArrayList<T>
and Vector<T> (5/15)

Java-11- 57

Methods in the Classes ArrayList<T>
and Vector<T> (6/15)

Java-11- 58

Methods in the Classes ArrayList<T>
and Vector<T> (7/15)

Java-11- 59

Methods in the Classes ArrayList<T>
and Vector<T> (8/15)

Java-11- 60

Methods in the Classes ArrayList<T>
and Vector<T> (9/15)

Java-11- 61

Methods in the Classes ArrayList<T>
and Vector<T> (10/15)

Java-11- 62

Methods in the Classes ArrayList<T>
and Vector<T> (11/15)

Java-11- 63

Methods in the Classes ArrayList<T>
and Vector<T> (12/15)

Java-11- 64

Methods in the Classes ArrayList<T>
and Vector<T> (13/15)

Java-11- 65

Methods in the Classes ArrayList<T>
and Vector<T> (14/15)

Java-11- 66

Methods in the Classes ArrayList<T>
and Vector<T> (15/15)

Java-11- 67

Differences Between
ArrayList<T> and Vector<T>
 For most purposes, the ArrayList<T> and
Vector<T> are equivalent
 The Vector<T> class is older, and had to be

retrofitted with extra method names to make it
fit into the collection framework

 The ArrayList<T> class is newer, and was
created as part of the Java collection
framework

 The ArrayList<T> class is supposedly more
efficient than the Vector<T> class also

Java-11- 68

Omitting the <T>

 When the <T> or corresponding class name
is omitted from a reference to a collection
class, this is an error for which the compiler
may or may not issue an error message
(depending on the details of the code), and
even if it does, the error message may be
quite strange
 Look for a missing <T> or <ClassName>

when a program that uses collection classes
gets a strange error message or doesn't run
correctly

Java-11- 69

A Peek at the Map Framework

 The Java map framework deals with collections of
ordered pairs
 For example, a key and an associated value

 Objects in the map framework can implement
mathematical functions and relations, so can be used
to construct database classes

 The map framework uses the Map<T> interface, the
AbstractMap<T> class, and classes derived from
the AbstractMap<T> class

Java-11- 70

Iterators

 An iterator is an object that is used with a
collection to provide sequential access to the
collection elements
 This access allows examination and possible

modification of the elements
 An iterator imposes an ordering on the

elements of a collection even if the collection
itself does not impose any order on the
elements it contains
 If the collection does impose an ordering on its

elements, then the iterator will use the same
ordering

Java-11- 71

The Iterator<T> Interface

 Java provides an Iterator<T> interface
 Any object of any class that satisfies the
Iterator<T> interface is an Iterator<T>

 An Iterator<T> does not stand on its own
 It must be associated with some collection

object using the method iterator
 If c is an instance of a collection class (e.g.,
ArrayList<String>), the following obtains
an iterator for c:
Iterator iteratorForC = c.iterator();

Java-11- 72

Methods in the Iterator<T>
Interface (1 of 2)

Java-11- 73

Methods in the Iterator<T>
Interface (2 of 2)

Java-11- 74

Using an Iterator with a HashSet<T>
Object
 A HashSet<T> object imposes no order on the

elements it contains
 However, an iterator will impose an order on the

elements in the hash set
 That is, the order in which they are produced by
next()

 Although the order of the elements so produced may
be duplicated for each program run, there is no
requirement that this must be the case

Java-11- 75

An Iterator (1 of 3)

Java-11- 76

An Iterator (2 of 3)

Java-11- 77

An Iterator (3 of 3)

Java-11- 78

For-Each Loops as Iterators

Although it is not an iterator, a for-each
loop can serve the same purpose as an
iterator
 A for-each loop can be used to cycle

through each element in a collection
For-each loops can be used with any of

the collections discussed here

Java-11- 79

For-Each Loops as Iterators (1/2)

Java-11- 80

For-Each Loops as Iterators (2/2)

Java-11- 81

The ListIterator<T> Interface

 The ListIterator<T> interface extends
the Iterator<T> interface, and is designed
to work with collections that satisfy the
List<T> interface
 A ListIterator<T> has all the methods

that an Iterator<T> has, plus additional
methods

 A ListIterator<T> can move in either
direction along a list of elements

 A ListIterator<T> has methods, such as
set and add, that can be used to modify
elements

Java-11- 82

Methods in the ListIterator<T>
Interface (1 of 4)

Java-11- 83

Methods in the ListIterator<T>
Interface (2 of 4)

Java-11- 84

Methods in the ListIterator<T>
Interface (3 of 4)

Java-11- 85

Methods in the ListIterator<T>
Interface (4 of 4)

Java-11- 86

The ListIterator<T> Cursor

 Every ListIterator<T> has a position marker known as the
cursor
 If the list has n elements, they are numbered by indices 0

through n-1, but there are n+1 cursor positions
 When next() is invoked, the element immediately following

the cursor position is returned and the cursor is moved
forward one cursor position

 When previous() is invoked, the element immediately
before the cursor position is returned and the cursor is
moved back one cursor position

Java-11- 87

ListIterator<T> Cursor Positions

Java-11- 88

next and previous Can Return a
Reference
 Theoretically, when an iterator operation

returns an element of the collection, it might
return a copy or clone of the element, or it
might return a reference to the element

 Iterators for the standard predefined
collection classes, such as ArrayList<T>
and HashSet<T>, actually return references
 Therefore, modifying the returned value will

modify the element in the collection

Java-11- 89

An Iterator Returns a Reference (1/4)

Java-11- 90

An Iterator Returns a Reference (2/4)

Java-11- 91

An Iterator Returns a Reference (3/4)

Java-11- 92

An Iterator Returns a Reference (4/4)

Java-11- 93

Defining Your Own Iterator Classes

 There is usually little need for a programmer defined
Iterator<T> or ListIterator<T> class

 The easiest and most common way to define a
collection class is to make it a derived class of one of
the library collection classes
 By doing this, the iterator() and
listIterator() methods automatically become
available to the program

 If a collection class must be defined in some other
way, then an iterator class should be defined as an
inner class of the collection class

	Module 11
	Parameterized Classes and Generics
	Slide 3
	Collections
	The Collection Landscape
	Optional Operations
	Wildcards
	Slide 8
	The Collection Framework
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Collection Relationships
	Slide 21
	Slide 22
	Methods in the Set<T> Interface (1/10)
	Methods in the Set<T> Interface (2/10)
	Methods in the Set<T> Interface (3/10)
	Methods in the Set<T> Interface (4/10)
	Methods in the Set<T> Interface (5/10)
	Methods in the Set<T> Interface (6/10)
	Methods in the Set<T> Interface (7/10)
	Methods in the Set<T> Interface (8/10)
	Methods in the Set<T> Interface (9/10)
	Methods in the Set<T> Interface (10/10)
	Methods in the List<T> Interface (1/16)
	Methods in the List<T> Interface (2/16)
	Methods in the List<T> Interface (3/16)
	Methods in the List<T> Interface (4/16)
	Methods in the List<T> Interface (5/16)
	Methods in the List<T> Interface (6/16)
	Methods in the List<T> Interface (7/16)
	Methods in the List<T> Interface (8/16)
	Methods in the List<T> Interface (9/16)
	Methods in the List<T> Interface (10/16)
	Methods in the List<T> Interface (11/16)
	Methods in the List<T> Interface (12/16)
	Methods in the List<T> Interface (13/16)
	Methods in the List<T> Interface (14/16)
	Methods in the List<T> Interface (15/16)
	Methods in the List<T> Interface (16/16)
	Dealing with All Those Exceptions
	Concrete Collections Classes
	Slide 51
	Methods in the Classes ArrayList<T> and Vector<T> (1/15)
	Methods in the Classes ArrayList<T> and Vector<T> (2/15)
	Methods in the Classes ArrayList<T> and Vector<T> (3/15)
	Methods in the Classes ArrayList<T> and Vector<T> (4/15)
	Methods in the Classes ArrayList<T> and Vector<T> (5/15)
	Methods in the Classes ArrayList<T> and Vector<T> (6/15)
	Methods in the Classes ArrayList<T> and Vector<T> (7/15)
	Methods in the Classes ArrayList<T> and Vector<T> (8/15)
	Methods in the Classes ArrayList<T> and Vector<T> (9/15)
	Methods in the Classes ArrayList<T> and Vector<T> (10/15)
	Methods in the Classes ArrayList<T> and Vector<T> (11/15)
	Methods in the Classes ArrayList<T> and Vector<T> (12/15)
	Methods in the Classes ArrayList<T> and Vector<T> (13/15)
	Methods in the Classes ArrayList<T> and Vector<T> (14/15)
	Methods in the Classes ArrayList<T> and Vector<T> (15/15)
	Differences Between ArrayList<T> and Vector<T>
	Omitting the <T>
	A Peek at the Map Framework
	Iterators
	The Iterator<T> Interface
	Methods in the Iterator<T> Interface (1 of 2)
	Methods in the Iterator<T> Interface (2 of 2)
	Using an Iterator with a HashSet<T> Object
	An Iterator (1 of 3)
	An Iterator (2 of 3)
	An Iterator (3 of 3)
	For-Each Loops as Iterators
	For-Each Loops as Iterators (1/2)
	For-Each Loops as Iterators (2/2)
	The ListIterator<T> Interface
	Methods in the ListIterator<T> Interface (1 of 4)
	Methods in the ListIterator<T> Interface (2 of 4)
	Methods in the ListIterator<T> Interface (3 of 4)
	Methods in the ListIterator<T> Interface (4 of 4)
	The ListIterator<T> Cursor
	ListIterator<T> Cursor Positions
	next and previous Can Return a Reference
	An Iterator Returns a Reference (1/4)
	An Iterator Returns a Reference (2/4)
	An Iterator Returns a Reference (3/4)
	An Iterator Returns a Reference (4/4)
	Defining Your Own Iterator Classes

