Module 3

Console Input and Output

Adapted from Absolute Java, Rose Williams, Binghamton University

System.out.println for
console output

System.out is an object that is part of the Java
language

println is a method invoked by the System. out
object that can be used for console output

The data to be output is given as an argument in
parentheses

A plus sign is used to connect more than one item
Every invocation of println ends a line of output

System.out.println ("The answer is " +
42) ;

Java-03- 2

println Versus print

Another method that can be invoked by the
System.out objectis print

The print method is like println, except
that it does not end a line

With println, the next output goes on a new
line

With print, the next output goes on the same
line

Java-03-3

Formatting Output with printf

Starting with version 5.0, Java includes a method
named print£f that can be used to produce output in
a specific format

The Java method printf is similar to the print
method

Like print, printf does not advance the output
to the next line

System.out.printf can have any number of
arguments

The first argument is always a format string that
contains one or more format specifiers for the
remaining arguments

All the arguments except the first are values to be
output to the screen

Java-03- 4

printf Format Specifier

The code

double price = 19.8;
System.out.print ("$") ;
System.out.printf ("%6.2f", price);
System.out.println(" each");

will output the line
S 19.80 each

The format string "%$6.2£" indicates the following:
End any text to be output and start the format specifier (%)

Display up to 6 right-justified characters, pad fewer than six characters on the left
with blank spaces (i.e., field width is 6)

Display exactly 2 digits after the decimal point (. 2)

Display a floating point number, and end the format specifier (i.e., the conversion
characteris £)

Java-03- 5

Right and Left Justification in

printf

The code
double
System
System
System
System

value = 12.123;

.out.printf ("Start%$8.2fEnd", wvalue);
.out.println() ;

.out.printf ("Start%-8.2fEnd", value)
.out.println() ;

will output the following

Start

12.12End

Startl2.12 End

The format string "Start%8.2fEnd" produces output
that is right justified with three blank spaces before the

12.12

The format string "Start%-8.2fEnd" produces output
that is left justified with three blank spaces after the

12.12

Java-03- 6

Line Breaks with print£f

Line breaks can be included in a format string
using $n

The code
double price = 19.8;
String name = "magic apple";

System.outprintf ("$%6.2f for each
%s.%n", price, name);
System.out.println ("Wow") ;

will output

$ 19.80 for each magic apple.
Wow

Java-03- 7

Format Specifiers for
System.out.printf

Format Specifiers for System.out.printf

d Decimal (ordinary) integer %5d
%d

f Fixed-point (everyday notation) floating point %6.2F
%t

e E-notation floating point %8 .3e
)
61S

g General floating point (Java decides whether to use %8 .39

E-notation or not) %9

S String %12s
%S

c Character %2C
%C

Java-03- 8

The print£ Method (1/3)

.

: = ~ - ey - -
Disp lay 2.2

The printf Method

vl AW N

O 0 N O

10
11

public class PrintfDemo

{

public static void main(String[] args)

{

String

System.
System.
System.
System.
System.
System.

aString = "abc";

out.println("String output:");
out.println("START1234567890");
out.printf("START%sSEND %n", aString);
out.printf("START%4sEND %n", aString);
out.printf("START%2sEND %n", aString);
out.println();

(continued)

Java-03-9

The print£ Method (2/3)

Display 2.2

The printf Method

12

13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28

char oneChracter = 'Z';

System.
System.
System.
System.
System.

double

Systenm.
System.
System.
System.
System.
System.
System.
System.

out.
out.
out.
out.
.println();

out

d=

out

println("Character output:");
println(""START1234567890");

printf (""START%CEND %n", oneCharacter);
printf("START%4cEND %n", oneCharacter);

12345.123456789;

.println("Floating-point output:");
out.
out.
out.
out.
out.
out.
out.

println("START1234567890");
printf ("START%FEND %n", d);
printf("START%.4fEND %n", d);
printf("START%.2fEND %n", d);
printf("START%12.4fEND %n", d);
printf("START%eEND %n", d);
printf("START%12.5eEND %n", d);

(continued)

Java-03- 10

The print£ Method (3/3)

Disp

y 2.2 The printf Method

SAMPLE DIALOGUE

String output:
START1234567890

STARTabcEnd The value is always output. If the specified field width

START abcEnd/ is too small, extra space is taken.
STARTabcEnd

Character output:
START1234567890
STARTZEND

START ZEND

Floating-point output:

START1234567890 Note that the output is rounded, not
START12345.123457END truncated, when digits are discarded.
START12345.1235END

START12345.12END

START 12345.1235END

START1.234512e+04END

START 1.23451e+04END

Java-03-11

Formatting Money Amounts with
printf

A good format specifier for outputting an amount of
money stored as a double type is $.2£

It says to include exactly two digits after the decimal

point and to use the smallest field width that the
value will fit into:

double price = 19.99;

System.out.printf ("The price is $%.2f
each.")

produces the output:
The price is $19.99 each.

Java-03- 12

Money Formats

Using the NumberFormat class enables a program

to output amounts of money using the appropriate
format

The NumberFormat class must first be imported
In order to use it

import java.text.NumberFormat

An object of NumberFormat must then be created
using the getCurrencyInstance () method

The format method takes a floating-point number
as an argument and returns a String value
representation of the number in the local currency

Java-03- 13

Money Formats

import java.text.NumberFormat;

public class CurrencyFormatDemo

{

public static void main(String[] args)

{

System.out.println ("Default location:");
NumberFormat moneyFormater =
NumberFormat.getCurrencyInstance() ;

System.
System.
System.
System.
System.

out.println (moneyFormater
out.println (moneyFormater
out.println (moneyFormater
out.println (moneyFormater
out.println() ;

.format (19.8)) ;
.format (19.81111)) ;
.format (19.89999)) ;
.format (19)) ;

Java-03- 14

Money Formats

“ Qutput of the previous program

Java-03- 15

Specifying Locale

Invoking the getCurrencyInstance ()
method without any arguments produces an
object that will format numbers according to
the default location

In contrast, the location can be explicitly
specified by providing a location from the
Locale class as an argument to the
getCurrencylInstance () method

When doing so, the Locale class must first
be imported

import java.util.Locale;

Java-03- 16

Specifying Locale

import java.text.NumberFormat;
import java.util.Locale;

public class CurrencyFormatDemo

{

public static void main(String[] args)
{
System.out.println("US as location:");
NumberFormat moneyFormater2 =
NumberFormat.getCurrencyInstance (Locale.US) ;

System.out.println (moneyFormater2.format(19.8));
System.out.println (moneyFormater2.format (19.81111)) ;
System.out.println (moneyFormater2.format(19.89999)) ;
System.out.println (moneyFormater2.format(19)) ;

Java-03-17

Specifying Locale

“ Qutput of the previous program

Java-03- 18

[.ocale Constants for Currencies of
Different Countries

Locale Constants for Currencies of Different Countries

Locale.CANADA Canada (for currency, the format is the same as US)
Locale.CHINA China

Locale.FRANCE France

Locale.GERMANY Germany

Locale.ITALY Italy

Locale.JAPAN Japan

Locale.KOREA Korea

Locale.TAIWAN Taiwan

Locale.UK United Kingdom (English pound)

Locale.US United States

Java-03- 19

The DecimalFormat Class

Using the DecimalFormat class enables a program
to format numbers in a variety of ways

The DecimalFormat class must first be imported

A DecimalFormat object is associated with a
pattern when it is created using the new command

The object can then be used with the method
format to create strings that satisfy the format

An object of the class DecimalFormat has a
number of different methods that can be used to
produce numeral strings in various formats

Java-03- 20

The DecimalFormat Class (1/3)

Display 2.5 The DecimalFormat Class

1

~N O bRw N

co

10
11
12

13
14
15
16
17

import java.text.DecimalFormat;

public class DecimalFormatDemo

{

public static void main(String[] args)

{

DecimalFormat pattern©0dot@00 = new DecimalFormat("00.000");
DecimalFormat pattern0dot00 = new DecimalFormat("0.00");

double

System.
System.
System.
System.

double

System.
.out.println("$" + pattern0dot@0.format(money));

System

d = 12.3456789;

out.println("Pattern 00.000");
out.println(pattern00dot000.format(d));
out.println("Pattern 0.00");
out.println(pattern0dot00.format(d));

money = 19.8;
out.println("Pattern 0.00");

DecimalFormat percent = new DecimalFormat("0.00%");

(continued)
Java-03- 21

The DecimalFormat Class (2/3)

Display 2.5 The DecimalFormat Class
18 System.out.println("Pattern 0.00%");
19 System.out.println(percent.format(0.308));
20 DecimalFormat eNotationl =
21 new DecimalFormat("#0.###EQ");//1 or 2 digits before point
22 DecimalFormat eNotation2 =
23 new DecimalFormat("00.###EQ");//2 digits before point
24 System.out.println("Pattern #0.###E0");
25 System.out.println(eNotationl.format(123.456));
26 System.out.println("Pattern 00.###EQ");
27 System.out.println(eNotation2.format(123.456));
28 double smallNumber = 0.0000123456;
29 System.out.println("Pattern #0.###E0");
30 System.out.println(eNotationl. format(smallNumber));
31 System.out.println("Pattern 00.###EQ");
32 System.out.println(eNotation2.format(smallNumber));
33 }
34 }

(continued)

Java-03- 22

The DecimalFormat Class (3/3)

Display 2.5 The DecimalFormat Class

SAMPLE DIALOGUE

Pattern 00.000
12.346 The number is always given, even

Pattern Ojflﬂ’d_ﬂﬂﬁ,,,-—*“”#ﬂffth@r@qumﬁ5WOMtMche
12.35 format pattern.
Pattern 0.00

$19.80

Pattern 0.00%

30.80%

Pattern #0.###EQ

1.2346E2

Pattern 00.###EQ

12.346E1

Pattern #0.###EOQ

12.346E-6

Pattern 00.###EQ
12.346E-6

Java-03- 23

Console Input Using the Scanner Class

Starting with version 5.0, Java includes a class for
doing simple keyboard input named the Scanner
class

In order to use the Scanner class, a program must
include the following line near the start of the file:

import java.util.Scanner
This statement tells Java to
Make the Scanner class available to the program

Find the Scanner class in a library of classes
(i.e., Java package) named java.util

Java-03- 24

Console Input Using the Scanner Class

The following line creates an object of the class
Scanner and names the object keyboard :

Scanner keyboard = new Scanner (System.in);

Although a name like keyboard is often used, a
Scanner object can be given any name

For example, in the following code the Scanner
object is named scannerObject

Scanner scannerObject = new Scanner (System.in);

Once a Scanner object has been created, a program
can then use that object to perform keyboard input
using methods of the Scanner class

Java-03- 25

Console Input Using the Scanner Class

The method nextInt reads one int value typed in at the
keyboard and assigns it to a variable:

int numberOfPods = keyboard.nextInt();

The method nextDouble reads one double value typed in
at the keyboard and assigns it to a variable:

double dl = keyboard.nextDouble() ;

Multiple inputs must be separated by whitespace and read
by multiple invocations of the appropriate method

Whitespace is any string of characters, such as blank
spaces, tabs, and line breaks that print out as white
space

Java-03- 26

Console Input Using the Scanner Class

The method next reads one string of non-whitespace
characters delimited by whitespace characters such as
blanks or the beginning or end of a line

Given the code
String wordl

keyboard.next () ;

String word2
and the input line
Jjelly beans

The value of wordl would be jelly, and the value of
word2 would be beans

keyboard.next () ;

Java-03- 27

Console Input Using the Scanner Class

The method nextLine reads an entire line of keyboard input
The code,
String line = keyboard.nextLine() ;

reads in an entire line and places the string that is read into the
variable 1ine

The end of an input line is indicated by the escape sequence
' \n v
This is the character input when the Enter key is pressed

On the screen it is indicated by the ending of one line and the
beginning of the next line

When nextLine reads a line of text, it reads the '"\n"
character, so the next reading of input begins on the next line

However, the '\n' does not become part of the string value
returned (e.g., the string named by the variable 1ine above
does not end with the '"\n' character)

Java-03- 28

Keyboard Input Demonstration (1/2)

Display 2.6 Keyboard Input Demonstration

1 import java.util.Scanner; ~—_ Makes the Scanner class available to

your program.

2 public class ScannerDemo

3 { .

4 public static void main(String[] args) Creates an object of the clase

Scanner and names the

’ { : - object keyboard.

6 Scanner keyboard = new Scanner(System.in);

7 System.out.println("Enter the number of pods followed by");

8 System.out.println("the number of peas in a pod:");

9 int numberOfPods = keyboard.nextInt();<e—_ Foch reads one int
10 int peasPerPod = keyboard.nextInt(); —= from the keyboard
11 int totalNumberOfPeas = numberOfPods*peasPerPod;

12 System.out.print(numberOfPods + " pods and ");

13 System.out.println(peasPerPod + " peas per pod.");

14 System.out.println("The total number of peas = "

15 + totalNumberOfPeas);
16 }

17}

(continued)
Java-03- 29

Keyboard Input Demonstration (2/2)

Display 2.6 Keyboard Input Demonstration

SAMPLE DIALOGUE 1
The numbers that are

Enter the number of pods followed by input must be
the number of peas in a pod: separated by
22 10 —=— whitespace, such as
22 pods and 10 peas per pod. one or more blarks.

The total number of peas = 220

SAMPLE DIALOGUE 2

A line break is also
considered whitespace and
cah be used to separate the
i numbers typed in at the
keyboard.

Enter the number of pods followed by
the number of peas in a pod:

22
10
22 pods and 10 peas per pod.
The total number of peas = 220

Java-03- 30

Another Keyboard Input
Demonstration (1/3)

Display 2.7 Another Keyboard Input Demonstration

1 import java.util.Scanner;

2 public class ScannerDemo2 Creates an object of
3 the class Scanner
4 public static void main(String[] args) and names the object
5 { scannerObject.
6 int nl, n2; /
7 Scanner scannerObject = new Scanner(System.1in);
8 System.out.println("Enter two whole numbers™);
9 System.out.println("seperated by one or more spaces:");
Reads oneint from the
10 nl = scannerObject.nextInt() ; —=— keyboard,
11 n2 = scannerObject.nextInt();
12 System.out.println("You entered " + nl1 + " and " + n2);
13 System.out.println("Next enter two numbers.");
14 System.out.println("Decimal points are allowed.");

(continued)

Java-03- 31

Another Keyboard Input
Demonstration (2/3)

Another Keyboard Input Demonstration

15
16
17
18

19

20
21
22
23

24

25
26
27
28
29

double d1, d2: Reads one double from

dl = scannerObject.nextDouble() ;/ the keyboard

d2 = scannerObject.nextDouble();
System.out.println("You entered " + d1 + " and " + d2);

System.out.println("Next enter two words:");
Reads one word from

String wordl = scannerObject.next();"/ the keyboard.
String word2 = scannerObject.next();
System.out.println("You entered \"" +

wordl + "\" and \"" + word2 + "\"");

String junk = scannerObject.nextLine(); //To get rid of "\n'
System.out.println("Next enter a line of text:"); \

String line = scannerObject.nextlLine();
System.out.println("You entergll: \"" + line + "\"'");

This line is
explained in the
Fitfall section
“Dealing with the
Line Terminator,

!\nl”

Reads an entire line.

(continued)

Java-03- 32

Another Keyboard Input
Demonstration (3/3)

Another Keyboard Input Demonstration

SAMPLE DIALOGUE

Enter two whole numbers
separated by one or more spaces:
42 43

You entered 42 and 43

Next enter two numbers.
A decimal point is OK.

9.99 57
You entered 9.99 and 57.0
Next enter two words:
jelly beans
You entered "jelly" and "beans"
Next enter a line of text:

Java flavored jelly beans are my favorite.
You entered "Java flavored jelly beans are my favorite.”

Java-03- 33

Dealing with the Line Terminator, ' \n'

The method nextLine of the class Scanner reads the
remainder of a line of text starting wherever the last keyboard
reading left off

This can cause problems when combining it with different
methods for reading from the keyboard such as nextInt

Given the code,

Scanner keyboard = new Scanner (System.in);
int n = keyboard.nextInt() ;

String sl = keyboard.nextLine() ;

String s2 = keyboard.nextLine() ;

and the input,

2

Heads are better than
1 head.

what are the values of n, s1, and s2?

Java-03- 34

Dealing with the Line Terminator, ' \n'

Given the code and input on the previous slide

n willbe equalto "2",

sl will be equalto "", and

s2 will be equal to "heads are better than"
If the following results were desired instead

n equalto "2",

sl equalto "heads are better than", and
s2 equalto "1 head"

then an extra invocation of nextLine would be needed
to get rid of the end of line character (' \n")

Java-03- 35

Methods 1n the Class Scanner (1/3)

Methods of the Scanner Class

The Scanner class can be used to obtain input from files as well as from the keyboard. However, here we
are assuming it is being used only for input from the keyboard.

To set things up for keyboard input, you need the following at the beginning of the file with the keyboard
input code:

import java.util.Scanner;
You also need the following before the first keyboard input statement:
Scanner Scannner_Object_Name = new Scanner(System.in);

The Scannner_0Object_Name can then be used with the following methods to read and return various
types of data typed on the keyboard.

Values to be read should be separated by whitespace characters, such as blanks and/or new lines. When
reading values, these whitespace characters are skipped. (It is possible to change the separators from
whitespace to something else, but whitespace is the default and is what we will use.)

Scannner_Object_Name.nextInt()
Returns the next value of type int that is typed on the keyboard.

(continued)

Java-03- 36

Methods 1n the Class Scanner (2/3)

Methods of the Scanner Class

Scannner_Object_Name.nextLong()

Returns the next value of type Long that is typed on the keyboard.

Scannner_Object_Name.nextByte()

Returns the next value of type byte that is typed on the keyboard.

Scannner_0Object_Name.nextShort ()

Returns the next value of type short that is typed on the keyboard.

Scannner_Object_Name.nextDouble()

Returns the next value of type double that is typed on the keyboard.

Scannner_Object_Name.nextFloat()

Returns the next value of type float that is typed on the keyboard.

(continued)

Java-03- 37

Methods 1n the Class Scanner (3/3)

Display 2.8 Methods of the Scanner Class

Scannner_Object_Name.next ()

Returns the String value consisting of the next keyboard characters up to, but not including, the first
delimiter character. The default delimiters are whitespace characters.

Scannner_Object_Name.nextBoolean()

Returns the next value of type boolean that is typed on the keyboard. The values of true and false are
entered as the strings "true" and "false". Any combination of upper- and/or lowercase letters is
allowed in spelling "true" and "false".

Scanner_Object_Name.nextLine()

Reads the rest of the current keyboard input line and returns the characters read as a value of type String.
Note that the line terminator '\n' is read and discarded; it is not included in the string returned.

Scanner_Object_Name.useDelimiter (New_Delimiter) ;

Changes the delimiter for keyboard input with Scanner_0bject_Name. The New_Delimiter is a value of type
String. After this statement is executed, New_Delimiter is the only delimiter that separates words or num-
bers. See the subsection “Other Input Delimiters” for details.

Java-03- 38

Prompt for Input

A program should always prompt the user

when he or she needs to input some data:

System.out.println (
"Enter the number of pods followed by") ;
System.out.println (

"the number of peas in a pod:");

Java-03- 39

Echo Input

Always echo all input that a program
receives from the keyboard

In this way a user can check that he or she
has entered the input correctly

Even though the input is automatically
displayed as the user enters it, echoing the
input may expose subtle errors (such as
entering the letter "O" instead of a zero)

Java-03- 40

Self-Service Checkout Line (1/2)

Display 2.9 Self-Service Check Out Line

1 import java.util.Scanner;

2 public class SelfService

3 1

4 public static void main(String[] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.println("Enter number of items purchased");

8 System.out.println("followed by the cost of one item.");

9 System.out.println("Do not use a dollar sign.");
10 int count = keyboard.nextInt();
11 double price = keyboard.nextDouble();
12 double total = count*price;
13 System.out.printf("%d items at $%.2f each.%n", count, price);
14 System.out.printf("Total amount due $%.2f.%n", total);
15 System.out.println("Please take your merchandise.");
16 System.out.printf("Place $%.2f in an envelope™gn'", total);
17 System.out.println("and slide it under the offi door.");
18 System.out.println("Thank you for using the self-3%ervice 1line.");
19 3 The dot after %.2F is a period in the
20} text, not part of the format specifier.
21

(continued)

Java-03- 41

Self-Service Checkout Line (2/2)

Self-Service Check Out Line

SAMPLE DIALOGUE

Enter number of items purchased
followed by the cost of one item.
Do not use a dollar sign.
10 19.99
10 items at $19.99 each.
Total amount due $199.90.
Please take your merchandise.
Place $199.90 in an envelope
and slide it under the office door.
Thank you for using the self-service line.

Java-03-42

The Empty String

A string can have any number of characters,
iIncluding zero characters

""" is the empty string

When a program executes the nextLine
method to read a line of text, and the user
types nothing on the line but presses the

Enter key, then the nextLine Method reads
the empty string

Java-03- 43

Other Input Delimiters

The delimiters that separate keyboard input can be
changed when using the Scanner class

For example, the following code could be used to
create a Scanner object and change the delimiter
from whitespace to "##"

Scanner keyboard2 = new
Scanner (System.1in) ;

Keyboard2.useDelimiter ("##") ;

After invocation of the useDelimiter method, "##"
and not whitespace will be the only input delimiter for
the input object keyboard2

Java-03- 44

Changing the Input Delimaiter (1/3)

Display 2.10 Changing the Input Delimiter

1 import java.util.Scanner;

public class DelimiterDemo

{

public static void main(String[] args)

{
Scanner keyboardl = new Scanner(System.in);
Scanner keyboard2 = new Scanner(System.in);
keyboard2.useDelimiter("##");
//Delimiter for keyboardl is whitespace.
//Delimiter for keyboard2 is ##.

0O 0 ~N Oy 1 B WM

=
(o)

(continued)

Java-03- 45

Changing the Input Delimiter (2/3)

y 2.10 Changing the Input Delimiter

11 String wordl, word?2;

12 System.out.println("Enter a line of text:");

13 wordl = keyboardl.next();

14 word2 = keyboardl.next();

15 System.out.println("For keyboardl the two words read are:");
16 System.out.println(wordl);

17 System.out.println(word2);

18 String junk = keyboardl.nextLine(); //To get rid of rest of line.
19

20 System.out.println(''Reenter the same line of text:™);

21 wordl = keyboard2.next();

22 word2 = keyboard2.next();

23 System.out.println("For keyboard2 the two words read are:");
24 System.out.println(wordl);

25 System.out.println(word2);

26 }

27 }

(continued)

Java-03- 46

Changing the Input Delimiter (3/3)

Changing the Input Delimiter

SAMPLE DIALOGUE

Enter a line of text:

one two##three##

For keyboardl the two words read are:
one

two##three##

Reenter the same line of text:

one two##three##

For keyboard2 the two words read are:
one two

three

Java-03- 47

	Module 3
	System.out.println for console output
	println Versus print
	Formatting Output with printf
	printf Format Specifier
	Right and Left Justification in printf
	Line Breaks with printf
	Format Specifiers for System.out.printf
	The printf Method (1/3)
	The printf Method (2/3)
	The printf Method (3/3)
	Formatting Money Amounts with printf
	Money Formats
	Slide 14
	Slide 15
	Specifying Locale
	Slide 17
	Slide 18
	Locale Constants for Currencies of Different Countries
	The DecimalFormat Class
	The DecimalFormat Class (1/3)
	The DecimalFormat Class (2/3)
	The DecimalFormat Class (3/3)
	Console Input Using the Scanner Class
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Keyboard Input Demonstration (1/2)
	Keyboard Input Demonstration (2/2)
	Another Keyboard Input Demonstration (1/3)
	Another Keyboard Input Demonstration (2/3)
	Another Keyboard Input Demonstration (3/3)
	Dealing with the Line Terminator, '\n'
	Slide 35
	Methods in the Class Scanner (1/3)
	Methods in the Class Scanner (2/3)
	Methods in the Class Scanner (3/3)
	Prompt for Input
	Echo Input
	Self-Service Checkout Line (1/2)
	Self-Service Checkout Line (2/2)
	The Empty String
	Other Input Delimiters
	Changing the Input Delimiter (1/3)
	Changing the Input Delimiter (2/3)
	Changing the Input Delimiter (3/3)

