
Adapted from Absolute Java, Rose Williams, Binghamton University

Module 6

Inheritance

Java-06- 2

Introduction to Inheritance

 Inheritance is one of the main techniques of
object-oriented programming (OOP)

 Using this technique, a very general form of a
class is first defined and compiled, and then
more specialized versions of the class are
defined by adding instance variables and
methods
 The specialized classes are said to inherit the

methods and instance variables of the general
class

Java-06- 3

Introduction to Inheritance

 Inheritance is the process by which a new class is
created from another class
 The new class is called a derived class
 The original class is called the base class

 A derived class automatically has all the instance
variables and methods that the base class has, and it
can have additional methods and/or instance
variables as well

 Inheritance is especially advantageous because it
allows code to be reused, without having to copy it
into the definitions of the derived classes

Java-06- 4

Derived Classes

 When designing certain classes, there is
often a natural hierarchy for grouping them
 In a record-keeping program for the

employees of a company, there are hourly
employees and salaried employees

 Hourly employees can be divided into full time
and part time workers

 Salaried employees can be divided into those
on technical staff, and those on the executive
staff

Java-06- 5

Derived Classes

 All employees share certain characteristics in
common
 All employees have a name and a hire date
 The methods for setting and changing names and

hire dates would be the same for all employees
 Some employees have specialized

characteristics
 Hourly employees are paid an hourly wage, while

salaried employees are paid a fixed wage
 The methods for calculating wages for these two

different groups would be different

Java-06- 6

Derived Classes

 Within Java, a class called Employee can
be defined that includes all employees

 This class can then be used to define
classes for hourly employees and salaried
employees
 In turn, the HourlyEmployee class can be

used to define a
PartTimeHourlyEmployee class, and so
forth

Java-06- 7

A Class Hierarchy

Java-06- 8

"Is a" Versus "Has a"

 A derived class demonstrates an "is a"
relationship between it and its base class
 Forming an "is a" relationship is one way to

make a more complex class out of a simpler
class

 For example, an HourlyEmployee "is an"
Employee

 HourlyEmployee is a more complex class
compared to the more general Employee
class

Java-06- 9

"Is a" Versus "Has a"

 Another way to make a more complex class
out of a simpler class is through a "has a"
relationship
 This type of relationship, called composition,

occurs when a class contains an instance
variable of a class type

 The Employee class contains an instance
variable, hireDate, of the class Date, so
therefore, an Employee "has a" Date

Java-06- 10

"Is a" Versus "Has a"

 Both kinds of relationships are commonly
used to create complex classes, often within
the same class
 Since HourlyEmployee is a derived class of
Employee, and contains an instance variable
of class Date, then HourlyEmployee "is
an" Employee and "has a" Date

Java-06- 11

Derived Classes

 Since an hourly employee is an employee, it
is defined as a derived class of the class
Employee
 A derived class is defined by adding instance

variables and methods to an existing class
 The existing class that the derived class is

built upon is called the base class
 The phrase extends BaseClass must be

added to the derived class definition:
 public class HourlyEmployee extends
Employee

Java-06- 12

Derived Classes

 When a derived class is defined, it is said to
inherit the instance variables and methods of
the base class that it extends
 Class Employee defines the instance

variables name and hireDate in its class
definition

 Class HourlyEmployee also has these
instance variables, but they are not specified
in its class definition

 Class HourlyEmployee has additional
instance variables wageRate and hours that
are specified in its class definition

Java-06- 13

Derived Classes

 Just as it inherits the instance variables of the
class Employee, the class
HourlyEmployee inherits all of its methods
as well
 The class HourlyEmployee inherits the

methods getName, getHireDate, setName,
and setHireDate from the class Employee

 Any object of the class HourlyEmployee can
invoke one of these methods, just like any
other method

Java-06- 14

Derived Class (Subclass)

 A derived class, also called a subclass, is
defined by starting with another already
defined class, called a base class or
superclass, and adding (and/or changing)
methods, instance variables, and static
variables
 The derived class inherits all the public

methods, all the public and private instance
variables, and all the public and private static
variables from the base class

 The derived class can add more instance
variables, static variables, and/or methods

Java-06- 15

Inherited Members

 A derived class automatically has all the
instance variables, all the static variables,
and all the public methods of the base class
 Members from the base class are said to be

inherited
 Definitions for the inherited variables and

methods do not appear in the derived class
 The code is reused without having to explicitly

copy it, unless the creator of the derived class
redefines one or more of the base class
methods

Java-06- 16

Parent and Child Classes

 A base class is often called the parent class
 A derived class is then called a child class

 These relationships are often extended such
that a class that is a parent of a parent . . . of
another class is called an ancestor class
 If class A is an ancestor of class B, then class
B can be called a descendent of class A

Java-06- 17

Overriding a Method Definition

Although a derived class inherits
methods from the base class, it can
change or override an inherited
method if necessary
 In order to override a method definition,

a new definition of the method is simply
placed in the class definition, just like
any other method that is added to the
derived class

Java-06- 18

Changing the Return Type of an
Overridden Method
 Ordinarily, the type returned may not be

changed when overriding a method
 However, if it is a class type, then the

returned type may be changed to that of any
descendent class of the returned type

 This is known as a covariant return type
 Covariant return types are new in Java 5.0;

they are not allowed in earlier versions of Java

Java-06- 19

Covariant Return Type

 Given the following base class:
public class BaseClass
{ . . .
 public Employee getSomeone(int someKey)
 . . .

 The following is allowed in Java 5.0:
public class DerivedClass extends BaseClass
{ . . .
 public HourlyEmployee getSomeone(int someKey)
 . . .

Java-06- 20

Changing the Access Permission of an
Overridden Method
 The access permission of an overridden

method can be changed from private in the
base class to public (or some other more
permissive access) in the derived class

 However, the access permission of an
overridden method can not be changed from
public in the base class to a more restricted
access permission in the derived class

Java-06- 21

Changing the Access Permission of an
Overridden Method
 Given the following method header in a base case:

private void doSomething()
 The following method header is valid in a derived

class:
public void doSomething()

 However, the opposite is not valid
 Given the following method header in a base case:

public void doSomething()
 The following method header is not valid in a derived

class:
private void doSomething()

Java-06- 22

Overriding Versus Overloading

 Do not confuse overriding a method in a
derived class with overloading a method
name
 When a method is overridden, the new

method definition given in the derived class
has the exact same number and types of
parameters as in the base class

 When a method in a derived class has a
different signature from the method in the
base class, that is overloading

 Note that when the derived class overloads
the original method, it still inherits the original
method from the base class as well

Java-06- 23

The final Modifier

 If the modifier final is placed before
the definition of a method, then that
method may not be redefined in a
derived class

 It the modifier final is placed before
the definition of a class, then that class
may not be used as a base class to
derive other classes

Java-06- 24

The super Constructor

 A derived class uses a constructor from the base
class to initialize all the data inherited from the base
class
 In order to invoke a constructor from the base

class, it uses a special syntax:
 public derivedClass(int p1, int p2, double p3)
 {
 super(p1, p2);
 instanceVariable = p3;
 }

 In the above example, super(p1, p2); is a call
to the base class constructor

Java-06- 25

The super Constructor

 A call to the base class constructor can never
use the name of the base class, but uses the
keyword super instead

 A call to super must always be the first
action taken in a constructor definition

 An instance variable cannot be used as an
argument to super

Java-06- 26

The super Constructor

 If a derived class constructor does not include
an invocation of super, then the no-
argument constructor of the base class will
automatically be invoked
 This can result in an error if the base class has

not defined a no-argument constructor
 Since the inherited instance variables should

be initialized, and the base class constructor
is designed to do that, then an explicit call to
super should always be used

Java-06- 27

The this Constructor

 Within the definition of a constructor for a
class, this can be used as a name for
invoking another constructor in the same
class
 The same restrictions on how to use a call to
super apply to the this constructor

 If it is necessary to include a call to both
super and this, the call using this must
be made first, and then the constructor that is
called must call super as its first action

Java-06- 28

The this Constructor

 Often, a no-argument constructor uses this to invoke
an explicit-value constructor
 No-argument constructor (invokes explicit-value

constructor using this and default arguments):
public ClassName()
{
 this(argument1, argument2);
}

 Explicit-value constructor (receives default values):
public ClassName(type1 param1, type2 param2)
{
 . . .
}

Java-06- 29

The this Constructor

public HourlyEmployee()
{
 this("No name", new Date(), 0, 0);
}

 The above constructor will cause the
constructor with the following heading to be
invoked:
public HourlyEmployee(String theName, Date
theDate, double theWageRate, double
theHours)

Java-06- 30

An Object of a Derived Class Has
More than One Type
 An object of a derived class has the type of

the derived class, and it also has the type of
the base class

 More generally, an object of a derived class
has the type of every one of its ancestor
classes
 Therefore, an object of a derived class can be

assigned to a variable of any ancestor type

Java-06- 31

An Object of a Derived Class Has
More than One Type
 An object of a derived class can be plugged

in as a parameter in place of any of its
ancestor classes

 In fact, a derived class object can be used
anyplace that an object of any of its ancestor
types can be used

 Note, however, that this relationship does not
go the other way
 An ancestor type can never be used in place

of one of its derived types

Java-06- 32

An Enhanced StringTokenizer Class

 Thanks to inheritance, most of the standard
Java library classes can be enhanced by
defining a derived class with additional
methods

 For example, the StringTokenizer class
enables all the tokens in a string to be
generated one time
 However, sometimes it would be nice to be

able to cycle through the tokens a second or
third time

Java-06- 33

An Enhanced StringTokenizer Class

 This can be made possible by creating a derived
class:
 For example, EnhancedStringTokenizer can

inherit the useful behavior of StringTokenizer
 It inherits the countTokens method unchanged

 The new behavior can be modeled by adding new
methods, and/or overriding existing methods
 A new method, tokensSoFar, is added
 While an existing method, nextToken, is

overriden

Java-06- 34

An Enhanced StringTokenizer Class (1/4)

Java-06- 35

An Enhanced StringTokenizer Class (2/4)

Java-06- 36

An Enhanced StringTokenizer Class (3/4)

Java-06- 37

An Enhanced StringTokenizer Class (4/4)

Java-06- 38

Use of Private Instance Variables from the
Base Class

 An instance variable that is private in a base class is
not accessible by name in the definition of a method
in any other class, not even in a method definition of a
derived class
 For example, an object of the HourlyEmployee

class cannot access the private instance variable
hireDate by name, even though it is inherited
from the Employee base class

 Instead, a private instance variable of the base class
can only be accessed by the public accessor and
mutator methods defined in that class
 An object of the HourlyEmployee class can use

the getHireDate or setHireDate methods to
access hireDate

Java-06- 39

Use of Private Instance Variables from the
Base Class

 If private instance variables of a class were
accessible in method definitions of a derived
class, then anytime someone wanted to
access a private instance variable, they
would only need to create a derived class,
and access it in a method of that class
 This would allow private instance variables to

be changed by mistake or in inappropriate
ways (for example, by not using the base
type's accessor and mutator methods only)

Java-06- 40

Private Methods Are Effectively Not
Inherited
 The private methods of the base class are like private

variables in terms of not being directly available
 However, a private method is completely unavailable,

unless invoked indirectly
 This is possible only if an object of a derived class

invokes a public method of the base class that
happens to invoke the private method

 This should not be a problem because private
methods should just be used as helping methods
 If a method is not just a helping method, then it

should be public, not private

Java-06- 41

Protected and Package Access

 If a method or instance variable is modified by
protected (rather than public or private), then
it can be accessed by name
 Inside its own class definition
 Inside any class derived from it
 In the definition of any class in the same package

 The protected modifier provides very weak
protection compared to the private modifier
 It allows direct access to any programmer who

defines a suitable derived class
 Therefore, instance variables should normally not

be marked protected

Java-06- 42

Protected and Package Access

 An instance variable or method definition that
is not preceded with a modifier has package
access
 Package access is also known as default or

friendly access
 Instance variables or methods having

package access can be accessed by name
inside the definition of any class in the same
package
 However, neither can be accessed outside the

package

Java-06- 43

Protected and Package Access

Note that package access is more
restricted than protected
 Package access gives more control to

the programmer defining the classes
 Whoever controls the package directory

(or folder) controls the package access

Java-06- 44

Access Modifiers

Java-06- 45

The Default Package

 When considering package access, do not
forget the default package
 All classes in the current directory (not

belonging to some other package) belong to an
unnamed package called the default package

 If a class in the current directory is not in any
other package, then it is in the default package
 If an instance variable or method has package

access, it can be accessed by name in the
definition of any other class in the default
package

Java-06- 46

A Restriction on Protected Access

 If a class B is derived from class A, and class
A has a protected instance variable n, but the
classes A and B are in different packages,
then the following is true:
 A method in class B can access n by name (n

is inherited from class A)
 A method in class B can create a local object

of itself, which can access n by name (again,
n is inherited from class A)

Java-06- 47

A Restriction on Protected Access

 However, if a method in class B creates an object of
class A, it can not access n by name
 A class knows about its own inherited variables

and methods
 However, it cannot directly access any instance

variable or method of an ancestor class unless
they are public

 Therefore, B can access n whenever it is used as
an instance variable of B, but B cannot access n
when it is used as an instance variable of A

 This is true if A and B are not in the same package
 If they were in the same package there would be

no problem, because protected access implies
package access

Java-06- 48

Static Variables Are Inherited

 Static variables in a base class are inherited
by any of its derived classes

 The modifiers public, private, and
protected, and package access have the
same meaning for static variables as they do
for instance variables

Java-06- 49

Access to a Redefined Base Method

 Within the definition of a method of a derived class,
the base class version of an overridden method of
the base class can still be invoked
 Simply preface the method name with super and a

dot
public String toString()
{
 return (super.toString() + "$" + wageRate);
}

 However, using an object of the derived class outside
of its class definition, there is no way to invoke the
base class version of an overridden method

Java-06- 50

You Cannot Use Multiple supers

 It is only valid to use super to invoke a method from
a direct parent
 Repeating super will not invoke a method from

some other ancestor class
 For example, if the Employee class were derived

from the class Person, and the HourlyEmployee
class were derived form the class Employee , it
would not be possible to invoke the toString
method of the Person class within a method of the
HourlyEmployee class
super.super.toString() // ILLEGAL!

Java-06- 51

The Class Object

 In Java, every class is a descendent of the
class Object
 Every class has Object as its ancestor
 Every object of every class is of type Object,

as well as being of the type of its own class

 If a class is defined that is not explicitly a
derived class of another class, it is still
automatically a derived class of the class
Object

Java-06- 52

The Class Object

 The class Object is in the package
java.lang which is always imported
automatically

 Having an Object class enables methods to
be written with a parameter of type Object
 A parameter of type Object can be replaced

by an object of any class whatsoever
 For example, some library methods accept an

argument of type Object so they can be used
with an argument that is an object of any class

Java-06- 53

The Class Object

 The class Object has some methods that every Java
class inherits
 For example, the equals and toString methods

 Every object inherits these methods from some
ancestor class
 Either the class Object itself, or a class that itself

inherited these methods (ultimately) from the class
Object

 However, these inherited methods should be
overridden with definitions more appropriate to a
given class
 Some Java library classes assume that every class

has its own version of such methods

Java-06- 54

The Right Way to Define equals

 Since the equals method is always inherited
from the class Object, methods like the
following simply overload it:
public boolean equals(Employee otherEmployee)

{ . . . }

 However, this method should be overridden,
not just overloaded:
public boolean equals(Object otherObject)

{ . . . }

Java-06- 55

The Right Way to Define equals

 The overridden version of equals must meet
the following conditions
 The parameter otherObject of type Object

must be type cast to the given class (e.g.,
Employee)

 However, the new method should only do this if
otherObject really is an object of that class,
and if otherObject is not equal to null

 Finally, it should compare each of the instance
variables of both objects

Java-06- 56

A Better equals Method for the
Class Employee

public boolean equals(Object otherObject)
{
 if(otherObject == null)
 return false;
 else if(getClass() != otherObject.getClass())
 return false;
 else
 {
 Employee otherEmployee = (Employee)otherObject;
 return (name.equals(otherEmployee.name) &&
 hireDate.equals(otherEmployee.hireDate));
 }
}

Java-06- 57

getClass Versus instanceof

 Many authors suggest using the instanceof
operator in the definition of equals
 Instead of the getClass() method

 The instanceof operator will return true if the
object being tested is a member of the class for
which it is being tested
 However, it will return true if it is a descendent of

that class as well
 It is possible (and especially disturbing), for the
equals method to behave inconsistently given this
scenario

Java-06- 58

getClass Versus instanceof

 Here is an example using the class Employee
. . . //excerpt from bad equals method
else if(!(OtherObject instanceof Employee))
 return false; . . .

 Now consider the following:
Employee e = new Employee("Joe", new Date());
HourlyEmployee h = new
 HourlyEmployee("Joe", new Date(),8.5, 40);
boolean testH = e.equals(h);
boolean testE = h.equals(e);

Java-06- 59

getClass Versus instanceof

 testH will be true, because h is an
Employee with the same name and hire date
as e

 However, testE will be false, because e is
not an HourlyEmployee, and cannot be
compared to h

 Note that this problem would not occur if the
getClass() method were used instead, as
in the previous equals method example

Java-06- 60

instanceof and getClass

 Both the instanceof operator and the
getClass() method can be used to check
the class of an object

 However, the getClass() method is more
exact
 The instanceof operator simply tests the

class of an object
 The getClass() method used in a test with
== or != tests if two objects were created with
the same class

Java-06- 61

The instanceof Operator

The instanceof operator checks if an
object is of the type given as its second
argument
Object instanceof ClassName
 This will return true if Object is of type
ClassName, and otherwise return
false

 Note that this means it will return true if
Object is the type of any descendent
class of ClassName

Java-06- 62

The getClass() Method

 Every object inherits the same getClass()
method from the Object class
 This method is marked final, so it cannot be

overridden
 An invocation of getClass() on an object

returns a representation only of the class that
was used with new to create the object
 The results of any two such invocations can be

compared with == or != to determine whether or
not they represent the exact same class

(object1.getClass() == object2.getClass())

	Module 6
	Introduction to Inheritance
	Slide 3
	Derived Classes
	Slide 5
	Slide 6
	A Class Hierarchy
	"Is a" Versus "Has a"
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Derived Class (Subclass)
	Inherited Members
	Parent and Child Classes
	Overriding a Method Definition
	Changing the Return Type of an Overridden Method
	Covariant Return Type
	Changing the Access Permission of an Overridden Method
	Slide 21
	Overriding Versus Overloading
	The final Modifier
	The super Constructor
	Slide 25
	Slide 26
	The this Constructor
	Slide 28
	Slide 29
	An Object of a Derived Class Has More than One Type
	Slide 31
	An Enhanced StringTokenizer Class
	Slide 33
	An Enhanced StringTokenizer Class (1/4)
	Slide 35
	Slide 36
	Slide 37
	Use of Private Instance Variables from the Base Class
	Slide 39
	Private Methods Are Effectively Not Inherited
	Protected and Package Access
	Slide 42
	Slide 43
	Access Modifiers
	The Default Package
	A Restriction on Protected Access
	Slide 47
	Static Variables Are Inherited
	Access to a Redefined Base Method
	You Cannot Use Multiple supers
	The Class Object
	Slide 52
	Slide 53
	The Right Way to Define equals
	Slide 55
	A Better equals Method for the Class Employee
	getClass Versus instanceof
	Slide 58
	Slide 59
	instanceof and getClass
	The instanceof Operator
	The getClass() Method

