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Module 6

Inheritance
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Introduction to Inheritance

 Inheritance is one of the main techniques of 
object-oriented programming (OOP)

 Using this technique, a very general form of a 
class is first defined and compiled, and then 
more specialized versions of the class are 
defined by adding instance variables and 
methods
 The specialized classes are said to inherit the 

methods and instance variables of the general 
class
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Introduction to Inheritance

 Inheritance is the process by which a new class is 
created from another class
 The new class is called a derived class
 The original class is called the base class

 A derived class automatically has all the instance 
variables and methods that the base class has, and it 
can have additional methods and/or instance 
variables as well

 Inheritance is especially advantageous because it 
allows code to be reused, without having to copy it 
into the definitions of the derived classes
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Derived Classes

 When designing certain classes, there is 
often a natural hierarchy for grouping them
 In a record-keeping program for the 

employees of a company, there are hourly 
employees and salaried employees

 Hourly employees can be divided into full time 
and part time workers

 Salaried employees can be divided into those 
on technical staff, and those on the executive 
staff
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Derived Classes

 All employees share certain characteristics in 
common
 All employees have a name and a hire date
 The methods for setting and changing names and 

hire dates would be the same for all employees
 Some employees have specialized 

characteristics
 Hourly employees are paid an hourly wage, while 

salaried employees are paid a fixed wage
 The methods for calculating wages for these two 

different groups would be different
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Derived Classes

 Within Java, a class called Employee can 
be defined that includes all employees

 This class can then be used to define 
classes for hourly employees and salaried 
employees
 In turn, the HourlyEmployee class can be 

used to define a 
PartTimeHourlyEmployee class, and so 
forth
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A Class Hierarchy
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"Is a" Versus "Has a"

 A derived class demonstrates an "is a" 
relationship between it and its base class
 Forming an "is a" relationship is one way to 

make a more complex class out of a simpler 
class

 For example, an HourlyEmployee "is an" 
Employee

 HourlyEmployee is a more complex class 
compared to the more general Employee 
class
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"Is a" Versus "Has a"

 Another way to make a more complex class 
out of a simpler class is through a "has a" 
relationship
 This type of relationship, called composition, 

occurs when a class contains an instance 
variable of a class type

 The Employee class contains an instance 
variable, hireDate, of the class Date, so 
therefore, an Employee "has a" Date
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"Is a" Versus "Has a"

 Both kinds of relationships are commonly 
used to create complex classes, often within 
the same class
 Since HourlyEmployee is a derived class of 
Employee, and contains an instance variable 
of class Date, then HourlyEmployee "is 
an" Employee and "has a" Date
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Derived Classes

 Since an hourly employee is an employee, it 
is defined as a derived class of the class 
Employee
 A derived class is defined by adding instance 

variables and methods to an existing class
 The existing class that the derived class is 

built upon is called the base class
 The phrase extends BaseClass must be 

added to the derived class definition:
 public class HourlyEmployee extends 
Employee
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Derived Classes

 When a derived class is defined, it is said to 
inherit the instance variables and methods of 
the base class that it extends
 Class Employee defines the instance 

variables name and hireDate in its class 
definition

 Class HourlyEmployee also has these 
instance variables, but they are not specified 
in its class definition

 Class HourlyEmployee has additional 
instance variables wageRate and hours that 
are specified in its class definition
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Derived Classes

 Just as it inherits the instance variables of the 
class Employee, the class 
HourlyEmployee inherits all of its methods 
as well
 The class HourlyEmployee inherits the 

methods getName, getHireDate, setName, 
and setHireDate from the class Employee

 Any object of the class HourlyEmployee can 
invoke one of these methods, just like any 
other method
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Derived Class (Subclass)

 A derived class, also called a subclass, is 
defined by starting with another already 
defined class, called a base class or 
superclass, and adding (and/or changing) 
methods, instance variables, and static 
variables
 The derived class inherits all the public 

methods, all the public and private instance 
variables, and all the public and private static 
variables from the base class

 The derived class can add more instance 
variables, static variables, and/or methods
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Inherited Members

 A derived class automatically has all the 
instance variables, all the static variables, 
and all the public methods of the base class
 Members from the base class are said to be 

inherited
 Definitions for the inherited variables and 

methods do not appear in the derived class
 The code is reused without having to explicitly 

copy it, unless the creator of the derived class 
redefines one or more of the base class 
methods
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Parent and Child Classes

 A base class is often called the parent class
 A derived class is then called a child class

 These relationships are often extended such 
that a class that is a parent of a parent . . . of 
another class is called an ancestor class
 If class A is an ancestor of class B, then class 
B can be called a descendent of class A
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Overriding a Method Definition

Although a derived class inherits 
methods from the base class, it can 
change or override an inherited 
method if necessary
 In order to override a method definition, 

a new definition of the method is simply 
placed in the class definition, just like 
any other method that is added to the 
derived class
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Changing the Return Type of an 
Overridden Method
 Ordinarily, the type returned may not be 

changed when overriding a method 
 However, if it is a class type, then the 

returned type may be changed to that of any 
descendent class of the returned type

 This is known as a covariant return type
 Covariant return types are new in Java 5.0; 

they are not allowed in earlier versions of Java
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Covariant Return Type

 Given the following base class:
public class BaseClass
{ . . .
  public Employee getSomeone(int someKey)
  . . .

 The following is allowed in Java 5.0:
public class DerivedClass extends BaseClass
{ . . .
  public HourlyEmployee getSomeone(int someKey)
  . . .
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Changing the Access Permission of an 
Overridden Method
 The access permission of an overridden 

method can be changed from private in the 
base class to public (or some other more 
permissive access) in the derived class

 However, the access permission of an 
overridden method can not be changed from 
public in the base class to a more restricted 
access permission in the derived class
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Changing the Access Permission of an 
Overridden Method
 Given the following method header in a base case:

private void doSomething()
 The following method header is valid in a derived 

class:
public void doSomething()

 However, the opposite is not valid
 Given the following method header in a base case:

public void doSomething()
 The following method header is not valid in a derived 

class: 
private void doSomething()
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Overriding Versus Overloading

 Do not confuse overriding a method in a 
derived class with overloading a method 
name
 When a method is overridden, the new 

method definition given in the derived class 
has the exact same number and types of 
parameters as in the base class

 When a method in a derived class has a 
different signature from the method in the 
base class, that is overloading

 Note that when the derived class overloads 
the original method, it still inherits the original 
method from the base class as well
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The final Modifier

 If the modifier final is placed before 
the definition of a method, then that 
method may not be redefined in a 
derived class

 It the modifier final is placed before 
the definition of a class, then that class 
may not be used as a base class to 
derive other classes
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The super Constructor

 A derived class uses a constructor from the base 
class to initialize all the data inherited from the base 
class
 In order to invoke a constructor from the base 

class, it uses a special syntax:
  public derivedClass(int p1, int p2, double p3)  
  {
    super(p1, p2);
    instanceVariable = p3;
  }

 In the above example, super(p1, p2); is a call 
to the base class constructor
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The super Constructor

 A call to the base class constructor can never 
use the name of the base class, but uses the 
keyword super instead

 A call to super must always be the first 
action taken in a constructor definition

 An instance variable cannot be used as an 
argument to super
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The super Constructor

 If a derived class constructor does not include 
an invocation of super, then the no-
argument constructor of the base class will 
automatically be invoked
 This can result in an error if the base class has 

not defined a no-argument constructor
 Since the inherited instance variables should 

be initialized, and the base class constructor 
is designed to do that, then an explicit call to 
super should always be used
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The this Constructor

 Within the definition of a constructor for a 
class, this can be used as a name for 
invoking another constructor in the same 
class
 The same restrictions on how to use a call to 
super apply to the this constructor

 If it is necessary to include a call to both 
super and this, the call using this must 
be made first, and then the constructor that is 
called must call super as its first action
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The this Constructor

 Often, a no-argument constructor uses this to invoke 
an explicit-value constructor
 No-argument constructor (invokes explicit-value 

constructor using this and default arguments):
public ClassName()
{
  this(argument1, argument2);
}

 Explicit-value constructor (receives default values):
public ClassName(type1 param1, type2 param2)
{
  . . .
}
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The this Constructor

public HourlyEmployee()
{
  this("No name", new Date(), 0, 0);
}

 The above constructor will cause the 
constructor with the following heading to be 
invoked:
public HourlyEmployee(String theName, Date 
theDate, double theWageRate, double 
theHours)
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An Object of a Derived Class Has 
More than One Type
 An object of a derived class has the type of 

the derived class, and it also has the type of 
the base class

 More generally, an object of a derived class 
has the type of every one of its ancestor 
classes
 Therefore, an object of a derived class can be 

assigned to a variable of any ancestor type
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An Object of a Derived Class Has 
More than One Type
 An object of a derived class can be plugged 

in as a parameter in place of any of its 
ancestor classes

 In fact, a derived class object can be used 
anyplace that an object of any of its ancestor 
types can be used

 Note, however, that this relationship does not 
go the other way
 An ancestor type can never be used in place 

of one of its derived types
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An Enhanced StringTokenizer Class

 Thanks to inheritance, most of the standard 
Java library classes can be enhanced by 
defining a derived class with additional 
methods 

 For example, the StringTokenizer class 
enables all the tokens in a string to be 
generated one time
 However, sometimes it would be nice to be 

able to cycle through the tokens a second or 
third time
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An Enhanced StringTokenizer Class

 This can be made possible by creating a derived 
class:
 For example,  EnhancedStringTokenizer can 

inherit the useful behavior of StringTokenizer
 It inherits the countTokens method unchanged

 The new behavior can be modeled by adding new 
methods, and/or overriding existing methods
 A new method, tokensSoFar, is added
 While an existing method, nextToken, is 

overriden
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An Enhanced StringTokenizer Class (1/4)
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An Enhanced StringTokenizer Class (2/4)
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An Enhanced StringTokenizer Class (3/4)
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An Enhanced StringTokenizer Class (4/4)
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Use of Private Instance Variables from the 
Base Class

 An instance variable that is private in a base class is 
not accessible by name in the definition of a method 
in any other class, not even in a method definition of a 
derived class
 For example, an object of the HourlyEmployee 

class cannot access the private instance variable 
hireDate by name, even though it is inherited 
from the Employee base class

 Instead, a private instance variable of the base class 
can only be accessed by the public accessor and 
mutator methods defined in that class
 An object of the HourlyEmployee class can use 

the getHireDate or setHireDate methods to 
access hireDate
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Use of Private Instance Variables from the 
Base Class

 If private instance variables of a class were 
accessible in method definitions of a derived 
class, then anytime someone wanted to 
access a private instance variable, they 
would only need to create a derived class, 
and access it in a method of that class
 This would allow private instance variables to 

be changed by mistake or in inappropriate 
ways (for example, by not using the base 
type's accessor and mutator methods only)



 
Java-06- 40

Private Methods Are Effectively Not 
Inherited
 The private methods of the base class are like private 

variables in terms of not being directly available
 However, a private method is completely unavailable, 

unless invoked indirectly 
 This is possible only if an object of a derived class 

invokes a public method of the base class that 
happens to invoke the private method

 This should not be a problem because private 
methods should just be used as helping methods
 If a method is not just a helping method, then it 

should be public, not private
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Protected and Package Access

 If a method or instance variable is modified by 
protected (rather than public or private), then 
it can be accessed by name
 Inside its own class definition 
 Inside any class derived from it
 In the definition of any class in the same package

 The protected modifier provides very weak 
protection compared to the private modifier
 It allows direct access to any programmer who 

defines a suitable derived class
 Therefore, instance variables should normally not 

be marked protected
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Protected and Package Access

 An instance variable or method definition that 
is not preceded with a modifier has package 
access
 Package access is also known as default or 

friendly access
 Instance variables or methods having 

package access can be accessed by name 
inside the definition of any class in the same 
package
 However, neither can be accessed outside the 

package
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Protected and Package Access

Note that package access is more 
restricted than protected
 Package access gives more control to 

the programmer defining the classes
 Whoever controls the package directory 

(or folder) controls the package access 
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Access Modifiers
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The Default Package

 When considering package access, do not 
forget the default package
 All classes in the current directory (not 

belonging to some other package) belong to an 
unnamed package called the default package

 If a class in the current directory is not in any 
other package, then it is in the default package
 If an instance variable or method has package 

access, it can be accessed by name in the 
definition of any other class in the default 
package
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A Restriction on Protected Access

 If a class B is derived from class A, and class 
A has a protected instance variable n, but the 
classes A and B are in different packages, 
then the following is true:
 A method in class B can access n by name (n 

is inherited from class A)
 A method in class B can create a local object 

of itself, which can access n by name (again, 
n is inherited from class A)
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A Restriction on Protected Access

 However, if a method in class B creates an object of 
class A, it can not access n by name
 A class knows about its own inherited variables 

and methods
 However, it cannot directly access any instance 

variable or method of an ancestor class unless 
they are public

 Therefore, B can access n whenever it is used as 
an instance variable of B, but B cannot access n 
when it is used as an instance variable of A

 This is true if A and B are not in the same package
 If they were in the same package there would be 

no problem, because protected access implies 
package access
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Static Variables Are Inherited

 Static variables in a base class are inherited 
by any of its derived classes

 The modifiers public, private, and 
protected, and package access have the 
same meaning for static variables as they do 
for instance variables
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Access to a Redefined Base Method

 Within the definition of a method of a derived class, 
the base class version of an overridden method of 
the base class can still be invoked
 Simply preface the method name with super and a 

dot
public String toString()
{
  return (super.toString() + "$" + wageRate);
}

 However, using an object of the derived class outside 
of its class definition, there is no way to invoke the 
base class version of an overridden method
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You Cannot Use Multiple supers

 It is only valid to use super to invoke a method from 
a direct parent
 Repeating super will not invoke a method from 

some other ancestor class
 For example, if the Employee class were derived 

from the class Person, and the HourlyEmployee 
class were derived form the class Employee , it 
would not be possible to invoke the toString 
method of the Person class within a method of the 
HourlyEmployee class
super.super.toString() // ILLEGAL!
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The Class Object

 In Java, every class is a descendent of the 
class Object
 Every class has Object as its ancestor
 Every object of every class is of type Object, 

as well as being of the type of its own class

 If a class is defined that is not explicitly a 
derived class of another class, it is still 
automatically a derived class of the class 
Object 
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The Class Object

 The class Object is in the package 
java.lang which is always imported 
automatically

 Having an Object class enables methods to 
be written with a parameter of type Object
 A parameter of type Object can be replaced 

by an object of any class whatsoever
 For example, some library methods accept an 

argument of type Object so they can be used 
with an argument that is an object of any class
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The Class Object

 The class Object has some methods that every Java 
class inherits
 For example, the equals and toString methods

 Every object inherits these methods from some 
ancestor class 
 Either the class Object itself, or a class that itself 

inherited these methods (ultimately) from the class 
Object 

 However, these inherited methods should be 
overridden with definitions more appropriate to a 
given class
 Some Java library classes assume that every class 

has its own version of such methods
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The Right Way to Define equals

 Since the equals method is always inherited 
from the class Object, methods like the 
following simply overload it:
public boolean equals(Employee otherEmployee)

{ . . . }

 However, this method should be overridden, 
not just overloaded:
public boolean equals(Object otherObject)

{ . . . }
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The Right Way to Define equals

 The overridden version of equals must meet 
the following conditions
 The parameter otherObject of type Object 

must be type cast to the given class (e.g., 
Employee)

 However, the new method should only do this if 
otherObject really is an object of that class, 
and if otherObject is not equal to null

 Finally, it should compare each of the instance 
variables of both objects 
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A Better equals Method for the 
Class Employee

public boolean equals(Object otherObject)
{
  if(otherObject == null)
    return false;
  else if(getClass( ) != otherObject.getClass( ))
    return false;
  else
  {
    Employee otherEmployee = (Employee)otherObject;
    return (name.equals(otherEmployee.name) && 
      hireDate.equals(otherEmployee.hireDate));
  }
}



 
Java-06- 57

getClass Versus instanceof

 Many authors suggest using the instanceof 
operator in the definition of equals
  Instead of the getClass() method

 The instanceof operator will return true if the 
object being tested is a member of the class for 
which it is being tested
 However, it will return true if it is a descendent of 

that class as well
 It is possible (and especially disturbing), for the 
equals method to behave inconsistently given this 
scenario
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getClass Versus instanceof

 Here is an example using the class Employee
. . . //excerpt from bad equals method
else if(!(OtherObject instanceof Employee))
  return false; . . .

 Now consider the following:
Employee e = new Employee("Joe", new Date());
HourlyEmployee h = new 
  HourlyEmployee("Joe", new Date(),8.5, 40);
boolean testH = e.equals(h);
boolean testE = h.equals(e);
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getClass Versus instanceof

 testH will be true, because h is an 
Employee with the same name and hire date 
as e

 However, testE will be false, because e is 
not an HourlyEmployee, and cannot be 
compared to h

 Note that this problem would not occur if the 
getClass() method were used instead, as 
in the previous equals method example
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instanceof and getClass

 Both the instanceof operator and the 
getClass() method can be used to check 
the class of an object

 However, the getClass() method is more 
exact
 The instanceof operator simply tests the 

class of an object
 The getClass() method used in a test with 
== or != tests if two objects were created with 
the same class
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The instanceof Operator

The instanceof operator checks if an 
object is of the type given as its second 
argument
Object instanceof ClassName
 This will return true if Object is of type 
ClassName, and otherwise return 
false

 Note that this means it will return true if 
Object is the type of any descendent 
class of ClassName
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The getClass() Method

 Every object inherits the same getClass() 
method from the Object class
 This method is marked final, so it cannot be 

overridden
 An invocation of getClass() on an object 

returns a representation only of the class that 
was used with new to create the object
 The results of any two such invocations can be 

compared with == or != to determine whether or 
not they represent the exact same class

(object1.getClass() == object2.getClass())
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