
Adapted from Absolute Java, Rose Williams, Binghamton University

Module 1

Introduction

Java-01- 2

Language Paradigms

 Major Programming Language Paradigms
 Procedural

 Imperative
 Object-Oriented

 Declarative
 Functional
 Logic Programming

 More Concepts
 Concurrency
 Exception Handling
 Persistency

 Other Paradigms
 Constraint, Rule-Based, Pattern, Scripting, Visual Language

Paradigms

Java-01- 3

The Object Oriented Paradigm

Programming methodology that views a
program as consisting of objects that
interact with one another by means of
actions (called methods)

Objects of the same kind are said to
have the same type or be in the same
class

Java-01- 4

The Object Oriented Paradigm

Paradigm Evolution
 Procedural-Oriented – 1950s-1970s

(procedural abstraction)
 Data-Oriented – early 1980s (data

abstraction, called object-based)
 Object-Oriented – late 1980s

(Inheritance and dynamic binding)

Java-01- 5

The Object Oriented Paradigm

 Categories of languages that support OOP:
 OOP support is added to an existing language

 C++ (also supports procedural and data-oriented programming)
 Ada 95 (also supports procedural and data-oriented programming)
 CLOS (also supports functional programming)
 Scheme (also supports functional programming)

 Support OOP, but have the same appearance and use the
basic structure of earlier imperative languages

 Eiffel (not based directly on any previous language)
 Java (based on C++)

 Pure OOP languages
 Smalltalk

Java-01- 6

Language Implementation

 Implementation Methods
 Compilation (Executable Images)

 Machine Code

 Pure Interpretation
 Hybrid Implementation

 Intermediate Code:
Machine Language/Assembly Language

Java-01- 7

Computer Language Levels

 High-level language: A language that people can read, write,
and understand
 A program written in a high-level language must be

translated into a language that can be understood by a
computer before it can be run

 Machine language: A language that a computer can
understand

 Low-level language: Machine language or any language
similar to machine language

 Compiler: A program that translates a high-level language
program into an equivalent low-level language program
 This translation process is called compiling

Java-01- 8

Byte-Code and the Java Virtual
Machine
 The compilers for most programming languages

translate high-level programs directly into the
machine language for a particular computer
 Since different computers have different machine

languages, a different compiler is needed for each
one

 In contrast, the Java compiler translates Java
programs into byte-code, a machine language for a
fictitious computer called the Java Virtual Machine
 Once compiled to byte-code, a Java program can

be used on any computer, making it highly
portable

Java-01- 9

Byte-Code and the Java Virtual
Machine
 Interpreter: The program that translates a

program written in Java byte-code into the
machine language for a particular computer
when a Java program is executed
 The interpreter translates and immediately

executes each byte-code instruction, one after
another

 Translating byte-code into machine code is
relatively easy compared to the initial
compilation step

Java-01- 10

The Unified Modeling Language
(UML)
 Pseudocode is a way of representing a

program in a linear and algebraic manner
 It simplifies design by eliminating the details of

programming language syntax
 Graphical representation systems for program

design have also been used
 Flowcharts and structure diagrams for example

 Unified Modeling Language (UML) is yet
another graphical representation formalism
 UML is designed to reflect and be used with the

OOP philosophy

Java-01- 11

Introduction to Java

 Most people are familiar with Java as a
language for Internet applications

 We will study Java as a general purpose
programming language
 The syntax of expressions and assignments

will be similar to that of other high-level
languages

 Details concerning the handling of strings and
console output will probably be new

Java-01- 12

Origins of the Java Language

 Created by Sun Microsystems team led by
James Gosling (1991)

 Originally designed for programming home
appliances
 Difficult task because appliances are

controlled by a wide variety of computer
processors

 Team developed a two-step translation
process to simplify the task of compiler writing
for each class of appliances

Java-01- 13

Origins of the Java Language

 Significance of Java translation process
 Writing a compiler (translation program) for

each type of appliance processor would have
been very costly

 Instead, developed intermediate language that
is the same for all types of processors : Java
byte-code

 Therefore, only a small, easy to write program
was needed to translate byte-code into the
machine code for each processor

Java-01- 14

Program terminology

 Code: A program or a part of a program
 Source code (or source program): A program written

in a high-level language such as Java
 The input to the compiler program

 Object code: The translated low-level program
 The output from the compiler program, e.g., Java byte-

code
 In the case of Java byte-code, the input to the Java

byte-code interpreter

Java-01- 15

Class Loader

 Java programs are divided into smaller parts
called classes
 Each class definition is normally in a separate

file and compiled separately

 Class Loader: A program that connects the
byte-code of the classes needed to run a
Java program
 In other programming languages, the

corresponding program is called a linker

Java-01- 16

Java Application Programs

 There are two types of Java programs:
applications and applets

 A Java application program or "regular" Java
program is a class with a method named
main
 When a Java application program is run, the

run-time system automatically invokes the
method named main

 All Java application programs start with the
main method

Java-01- 17

Applets

 A Java applet (little Java application) is a
Java program that is meant to be run from a
Web browser
 Can be run from a location on the Internet
 Can also be run with an applet viewer program

for debugging
 Applets always use a windowing interface

 In contrast, application programs may use a
windowing interface or console (i.e., text) I/O

Java-01- 18

A Sample Java Application
Program

Java-01- 19

Syntax and Semantics

 Syntax: The arrangement of words and
punctuations that are legal in a language, the
grammar rules of a language

 Semantics: The meaning of things written
while following the syntax rules of a language

 Compilation can uncover syntax errors but
not semantic ones

Java-01- 20

Comments

 A line comment begins with the symbols //, and
causes the compiler to ignore the remainder of the
line
 This type of comment is used for the code writer or for

a programmer who modifies the code
 A block comment begins with the symbol pair /*, and

ends with the symbol pair */
 The compiler ignores anything in between
 This type of comment can span several lines
 This type of comment provides documentation for the

users of the program

Java-01- 21

Program Documentation

 Java comes with a program called javadoc that
will automatically extract documentation from block
comments in the classes you define
 As long as their opening has an extra asterisk (/**)

 Ultimately, a well written program is self-
documenting
 Its structure is made clear by the choice of identifier

names and the indenting pattern
 When one structure is nested inside another, the

inside structure is indented one more level

Java-01- 22

@ Tags

 @ tags should be placed in the order found below
 If there are multiple parameters, each should have its own

@param on a separate line, and each should be listed
according to its left-to-right order on the parameter list

 If there are multiple authors, each should have its own
@author on a separate line
@param Parameter_Name Parameter_Description
@return Description_Of_Value_Returned
@throws Exception_Type Explanation
@deprecated
@see Package_Name.Class_Name
@author Author
@version Version_Information

Java-01- 23

Compiling a Java Program or Class

 Each class definition must be in a file whose name is the same as
the class name followed by .java
 The class FirstProgram must be in a file named
FirstProgram.java

 Each class is compiled with the command javac followed by the
name of the file in which the class resides

javac FirstProgram.java
 The result is a byte-code program whose filename is the same

as the class name followed by .class

FirstProgram.class

 For now, your program and all the classes it uses
should be in the same directory or folder

Java-01- 24

Running a Java Program

 A Java program can be given the run command
(java) after all its classes have been compiled
 Only run the class that contains the main method

(the system will automatically load and run the
other classes, if any)

 The main method begins with the line:
public static void main(String[] args)
 Follow the run command by the name of the class

only (no .java or .class extension)
java FirstProgram

	Module 1
	Language Paradigms
	The Object Oriented Paradigm
	Slide 4
	Slide 5
	Language Implementation
	Computer Language Levels
	Byte-Code and the Java Virtual Machine
	Slide 9
	The Unified Modeling Language (UML)
	Introduction to Java
	Origins of the Java Language
	Slide 13
	Program terminology
	Class Loader
	Java Application Programs
	Applets
	A Sample Java Application Program
	Syntax and Semantics
	Comments
	Program Documentation
	@ Tags
	Compiling a Java Program or Class
	Running a Java Program

