Module 1

Introduction

Adapted from Absolute Java, Rose Williams, Binghamton University

Language Paradigms

Major Programming Language Paradigms
Procedural
Imperative
Object-Oriented
Declarative
Functional
Logic Programming
More Concepts
Concurrency
Exception Handling
Persistency
Other Paradigms

Constraint, Rule-Based, Pattern, Scripting, Visual Language
Paradigms

Java-01-2

The Object Oriented Paradigm

Programming methodology that views a
program as consisting of objects that
interact with one another by means of
actions (called methods)

Objects of the same kind are said to
have the same type or be in the same
class

Java-01-3

The Object Oriented Paradigm

Paradigm Evolution

Procedural-Oriented — 1950s-1970s
(procedural abstraction)

Data-Oriented — early 1980s (data
abstraction, called object-based)

Object-Oriented — late 1980s
(Inheritance and dynamic binding)

Java-01-4

The Object Oriented Paradigm

Categories of languages that support OOP:
OORP support is added to an existing language

C++ (also supports procedural and data-oriented programming)
Ada 95 (also supports procedural and data-oriented programming)
CLOS (also supports functional programming)

Scheme (also supports functional programming)

Support OOP, but have the same appearance and use the
basic structure of earlier imperative languages

Eiffel (not based directly on any previous language)

Java (based on C++)

Pure OOP languages
Smalltalk

Java-01-5

Language Implementation

Implementation Methods

Compilation (Executable Images)
Machine Code

Pure Interpretation

Hybrid Implementation

Intermediate Code:
Machine Language/Assembly Language

Java-01-6

Computer Language Levels

High-level language: A language that people can read, write,
and understand

A program written in a high-level language must be
translated into a language that can be understood by a
computer before it can be run

Machine language: A language that a computer can
understand

Low-level language: Machine language or any language
similar to machine language

Compiler: A program that translates a high-level language
program into an equivalent low-level language program

This translation process is called compiling

Java-01-7

Byte-Code and the Java Virtual
Machine

The compilers for most programming languages
translate high-level programs directly into the
machine language for a particular computer

Since different computers have different machine
languages, a different compiler is needed for each
one

In contrast, the Java compiler translates Java
programs into byte-code, a machine language for a
fictitious computer called the Java Virtual Machine

Once compiled to byte-code, a Java program can
be used on any computer, making it highly
portable

Java-01- 8

Byte-Code and the Java Virtual
Machine

Interpreter: The program that translates a
program written in Java byte-code into the
machine language for a particular computer
when a Java program is executed

The interpreter translates and immediately

executes each byte-code instruction, one after
another

Translating byte-code into machine code is
relatively easy compared to the initial
compilation step

Java-01-9

The Unified Modeling Language
(UML)

Pseudocode is a way of representing a
program in a linear and algebraic manner

It simplifies design by eliminating the details of

programming language syntax
Graphical representation systems for program
design have also been used

Flowcharts and structure diagrams for example
Unified Modeling Language (UML) is yet
another graphical representation formalism

UML is designed to reflect and be used with the
OOP philosophy

Java-01- 10

Introduction to Java

Most people are familiar with Java as a
language for Internet applications

We will study Java as a general purpose
programming language

The syntax of expressions and assignments
will be similar to that of other high-level
languages

Details concerning the handling of strings and
console output will probably be new

Java-01-11

Origins of the Java Language

Created by Sun Microsystems team led by
James Gosling (1991)

Originally designed for programming home
appliances
Difficult task because appliances are

controlled by a wide variety of computer
Processors

Team developed a two-step translation
process to simplify the task of compiler writing
for each class of appliances

Java-01- 12

Origins of the Java Language

Significance of Java translation process

Writing a compiler (translation program) for
each type of appliance processor would have
been very costly

Instead, developed intermediate language that
is the same for all types of processors : Java
byte-code

Therefore, only a small, easy to write program
was needed to translate byte-code into the
machine code for each processor

Java-01- 13

Program terminology

Code: A program or a part of a program

Source code (or source program). A program written
In a high-level language such as Java

The input to the compiler program

Object code: The translated low-level program

The output from the compiler program, e.g., Java byte-
code

In the case of Java byte-code, the input to the Java
byte-code interpreter

Java-01- 14

Class Loader

Java programs are divided into smaller parts
called

Each class definition is normally in a separate
file and compiled separately

Class Loader. A program that connects the
byte-code of the classes needed to run a
Java program

In other programming languages, the
corresponding program is called a linker

Java-01- 15

Java Application Programs

There are two types of Java programs:
applications and applets
A Java application program or "regular” Java
program is a class with a method named
malin

When a Java application program is run, the

run-time system automatically invokes the
method named main

All Java application programs start with the
main method

Java-01- 16

Applets

A Java applet (little Java application) is a
Java program that is meant to be run from a
Web browser

Can be run from a location on the Internet

Can also be run with an applet viewer program
for debugging

Applets always use a windowing interface

In contrast, application programs may use a
windowing interface or console (i.e., text) 1/0

Java-01-17

A Sample Java Application

-_———

Display 1.1 A Sample Java Program

Name of class (program|
1 public class FirstProgram =«—— The main method
2 { -‘r###,,f’”
3 public static void main(String[] args)
4 {
5 System.out.println("Hello reader.");
6 System.out.println("Welcome to Java.");
7 System.out.println("Let's demonstrate a simple calculation.");
8 int answer;
9 answer = 2 + 2;
10 System.out.println("2 plus 2 is " + answer);
11 }
12 }

SAMPLE DIALOGUE 1

Hello reader.

Welcome to Java.

Let's demonstrate a simple calculation.
2 plus 2 is 4

Java-01-18

Syntax and Semantics

Syntax. The arrangement of words and
punctuations that are legal in a language, the
grammar rules of a language

Semantics: The meaning of things written
while following the syntax rules of a language

Compilation can uncover syntax errors but
not semantic ones

Java-01-19

Comments

A line comment begins with the symbols //, and
causes the compiler to ignore the remainder of the
line
This type of comment is used for the code writer or for
a programmer who modifies the code

A block comment begins with the symbol pair /*, and
ends with the symbol pair */

The compiler ignores anything in between

This type of comment can span several lines

This type of comment provides documentation for the
users of the program

Java-01- 20

Program Documentation

Java comes with a program called javadoc that
will automatically extract documentation from block
comments in the classes you define

As long as their opening has an extra asterisk (/**)
Ultimately, a well written program is self-
documenting

Its structure is made clear by the choice of identifier
names and the indenting pattern

When one structure is nested inside another, the
inside structure is indented one more level

Java-01- 21

(@ Tags

@ tags should be placed in the order found below

If there are multiple parameters, each should have its own
@param on a separate line, and each should be listed
according to its left-to-right order on the parameter list

If there are multiple authors, each should have its own
@author on a separate line

@param Parameter Name Parameter Description
@return Description Of Value Returned
@throws Exception Type Explanation
@deprecated

@see Package Name.Class Name

@author Author

@version Version Information

Java-01- 22

Compiling a Java Program or Class

Each class definition must be in a file whose name is the same as
the class name followed by . java

The class FirstProgram must be in a file named
FirstProgram. java

Each class is compiled with the command javac followed by the
name of the file in which the class resides

javac FirstProgram. java

The result is a byte-code program whose filename is the same
as the class name followed by .class

FirstProgram.class

For now, your program and all the classes it uses
should be in the same directory or folder

Java-01- 23

Running a Java Program

A Java program can be given the run command
(Java) after all its classes have been compiled

Only run the class that contains the main method
(the system will automatically load and run the
other classes, if any)

The main method begins with the line:
public static void main (String[] args)

Follow the run command by the name of the class
only (no . java or .class extension)

jJava FirstProgram

Java-01- 24

	Module 1
	Language Paradigms
	The Object Oriented Paradigm
	Slide 4
	Slide 5
	Language Implementation
	Computer Language Levels
	Byte-Code and the Java Virtual Machine
	Slide 9
	The Unified Modeling Language (UML)
	Introduction to Java
	Origins of the Java Language
	Slide 13
	Program terminology
	Class Loader
	Java Application Programs
	Applets
	A Sample Java Application Program
	Syntax and Semantics
	Comments
	Program Documentation
	@ Tags
	Compiling a Java Program or Class
	Running a Java Program

