
Adapted from Absolute Java, Rose Williams, Binghamton University

Module 7

Polymorphism, Abstract Classes, and
Interfaces

Java-07- 2

Introduction to Polymorphism

 There are three main programming
mechanisms that constitute object-oriented
programming (OOP)
 Encapsulation
 Inheritance
 Polymorphism

 Polymorphism is the ability to associate many
meanings to one method name
 It does this through a special mechanism

known as late binding or dynamic binding

Java-07- 3

Late Binding

The process of associating a method
definition with a method invocation is
called binding

 If the method definition is associated
with its invocation when the code is
compiled, that is called early binding

 If the method definition is associated
with its invocation when the method is
invoked (at run time), that is called late
binding or dynamic binding

Java-07- 4

Late Binding

 Java uses late binding for all methods
(except private, final, and static
methods)

Because of late binding, a method can
be written in a base class to perform a
task, even if portions of that task aren't
yet defined

For an example, the relationship
between a base class called Sale and
its derived class DiscountSale will be
examined

Java-07- 5

Upcasting and Downcasting

 Upcasting is when an object of a derived class is
assigned to a variable of a base class (or any
ancestor class)

Sale saleVariable; //Base class

DiscountSale discountVariable = new

 DiscountSale("paint", 15,10); //Derived class

saleVariable = discountVariable; //Upcasting

System.out.println(saleVariable.toString());

 Because of late binding, toString above uses the
definition given in the DiscountSale class

Java-07- 6

Upcasting and Downcasting

 Downcasting is when a type cast is performed from a
base class to a derived class (or from any ancestor
class to any descendent class)
 Downcasting has to be done very carefully
 In many cases it doesn't make sense, or is illegal:

discountVariable = //will produce

 (DiscountSale)saleVariable;//run-time error
discountVariable = saleVariable //will produce
 //compiler error

 There are times, however, when downcasting is
necessary, e.g., inside the equals method for a
class:

Sale otherSale = (Sale)otherObject;//downcasting

Java-07- 7

No Late Binding for Static Methods

 When the decision of which definition of a
method to use is made at compile time, that is
called static binding
 This decision is made based on the type of the

variable naming the object
 Java uses static, not late, binding with private,
final, and static methods
 In the case of private and final methods,

late binding would serve no purpose
 However, in the case of a static method

invoked using a calling object, it does make a
difference

Java-07- 8

No Late Binding for Static Methods

 The Sale class announcement() method:

public static void announcement()
{
 System.out.println("Sale class");
}

 The DiscountSale class announcement()
method:
public static void announcement()
{
 System.out.println("DiscountSale class");
}

Java-07- 9

No Late Binding for Static Methods

 In the previous example, the simple (Sale
class) and discount (DiscountClass)
objects were created

 Given the following assignment:
simple = discount;

 Now the two variables point to the same
object

 In particular, a Sale class variable names a
DiscountClass object

Java-07- 10

 Given the invocation:
simple.announcement();

 The output is:

Sale class
 Note that here, announcement is a static

method invoked by a calling object (instead
of its class name)
 Therefore the type of simple is determined

by its variable name, not the object that it
references

No Late Binding for Static Methods

Java-07- 11

No Late Binding for Static Methods

 There are other cases where a static method
has a calling object in a more inconspicuous
way

 For example, a static method can be invoked
within the definition of a nonstatic method, but
without any explicit class name or calling
object

 In this case, the calling object is the implicit
this

Java-07- 12

The final Modifier

 A method marked final indicates that it
cannot be overridden with a new definition in
a derived class
 If final, the compiler can use early binding

with the method

public final void someMethod() { . . . }

 A class marked final indicates that it
cannot be used as a base class from which to
derive any other classes

Java-07- 13

 If an appropriate toString method is defined for a
class, then an object of that class can be output using
System.out.println

Sale aSale = new Sale("tire gauge",
9.95);

System.out.println(aSale);

 Output produced:

tire gauge Price and total cost = $9.95

 This works because of late binding

Example: Late Binding with toString

Java-07- 14

Example: Late Binding with toString

 One definition of the method println takes a
single argument of type Object:

public void println(Object theObject)
{
 System.out.println(theObject.toString());
}
 In turn, It invokes the version of println that

takes a String argument
 Note that the println method was defined before

the Sale class existed
 Yet, because of late binding, the toString method

from the Sale class is used, not the toString
from the Object class

Java-07- 15

An Object knows the Definitions of its
Methods
 The type of a class variable determines which

method names can be used with the variable
 However, the object named by the variable

determines which definition with the same
method name is used

 A special case of this rule is as follows:
 The type of a class parameter determines

which method names can be used with the
parameter

 The argument determines which definition of
the method name is used

Java-07- 16

Downcasting

 It is the responsibility of the programmer
to use downcasting only in situations
where it makes sense
 The compiler does not check to see if

downcasting is a reasonable thing to do
Using downcasting in a situation that

does not make sense usually results in
a run-time error

Java-07- 17

Checking to See if Downcasting is
Legitimate

 Downcasting to a specific type is only
sensible if the object being cast is an instance
of that type
 This is exactly what the instanceof operator

tests for:
object instanceof ClassName

 It will return true if object is of type
ClassName

 In particular, it will return true if object is an
instance of any descendent class of
ClassName

Java-07- 18

Introduction to Abstract Classes

 While discussing Inheritance, the Employee base
class and two of its derived classes,
HourlyEmployee and SalariedEmployee were
defined

 The following method is added to the Employee class
 It compares employees to to see if they have the

same pay:
public boolean samePay(Employee other)
{
 return(this.getPay() == other.getPay());
}

Java-07- 19

Introduction to Abstract Classes

 There are several problems with this method:
 The getPay method is invoked in the
samePay method

 There are getPay methods in each of the
derived classes

 There is no getPay method in the Employee
class, nor is there any way to define it
reasonably without knowing whether the
employee is hourly or salaried

Java-07- 20

Introduction to Abstract Classes

 The ideal situation would be if there were a
way to
 Postpone the definition of a getPay method

until the type of the employee were known
(i.e., in the derived classes)

 Leave some kind of note in the Employee
class to indicate that it was accounted for

 Surprisingly, Java allows this using abstract
classes and methods

Java-07- 21

Introduction to Abstract Classes

 In order to postpone the definition of a
method, Java allows an abstract method to
be declared
 An abstract method has a heading, but no

method body
 The body of the method is defined in the

derived classes

 The class that contains an abstract method is
called an abstract class

Java-07- 22

Abstract Method

 An abstract method is like a placeholder for a
method that will be fully defined in a
descendent class

 It has a complete method heading, to which
has been added the modifier abstract

 It cannot be private
 It has no method body, and ends with a

semicolon in place of its body
public abstract double getPay();
public abstract void doIt(int count);

Java-07- 23

Abstract Class

 A class that has at least one abstract method
is called an abstract class
 An abstract class must have the modifier
abstract included in its class heading:
public abstract class Employee
{
 private instanceVariables;
 . . .
 public abstract double getPay();
 . . .
}

Java-07- 24

Abstract Class

 An abstract class can have any number of
abstract and/or fully defined methods

 If a derived class of an abstract class adds to
or does not define all of the abstract methods,
then it is abstract also, and must add
abstract to its modifier

 A class that has no abstract methods is called
a concrete class

Java-07- 25

You Cannot Create Instances of an
Abstract Class
 An abstract class can only be used to derive

more specialized classes
 While it may be useful to discuss employees in

general, in reality an employee must be a
salaried worker or an hourly worker

 An abstract class constructor cannot be used
to create an object of the abstract class
 However, a derived class constructor will

include an invocation of the abstract class
constructor in the form of super

Java-07- 26

An Abstract Class Is a Type

 Although an object of an abstract class
cannot be created, it is perfectly fine to have
a parameter of an abstract class type
 This makes it possible to plug in an object of

any of its descendent classes

 It is also fine to use a variable of an abstract
class type, as long is it names objects of its
concrete descendent classes only

Java-07- 27

Interfaces

 An interface is something like an extreme case of an
abstract class
 However, an interface is not a class
 It is a type that can be satisfied by any class that

implements the interface
 The syntax for defining an interface is similar to that of

defining a class
 Except the word interface is used in place of class

 An interface specifies a set of methods that any class that
implements the interface must have
 It contains method headings and constant definitions

only
 It contains no instance variables nor any complete

method definitions

Java-07- 28

Interfaces

An interface serves a function similar to a
base class, though it is not a base class
 Some languages allow one class to be

derived from two or more different base
classes

 This multiple inheritance is not allowed in
Java

 Instead, Java's way of approximating multiple
inheritance is through interfaces

Java-07- 29

Interfaces

 An interface and all of its method headings should
be declared public
 They cannot be given private, protected, or

package access
 When a class implements an interface, it must

make all the methods in the interface public
 Because an interface is a type, a method may be

written with a parameter of an interface type
 That parameter will accept as an argument any

class that implements the interface

Java-07- 30

The Ordered Interface

Java-07- 31

Interfaces

 To implement an interface, a concrete class must
do two things:

1. It must include the phrase
implements Interface_Name
at the start of the class definition
– If more than one interface is implemented,

each is listed, separated by commas
1. The class must implement all the method

headings listed in the definition(s) of the
interface(s)

 Note the use of Object as the parameter
type in the following examples

Java-07- 32

Implementation of an Interface

Java-07- 33

Implementation of an Interface

Java-07- 34

Abstract Classes Implementing
Interfaces

Abstract classes may implement one or
more interfaces
 Any method headings given in the

interface that are not given definitions
are made into abstract methods

A concrete class must give definitions
for all the method headings given in the
abstract class and the interface

Java-07- 35

An Abstract Class Implementing an
Interface

Java-07- 36

Derived Interfaces

 Like classes, an interface may be derived
from a base interface
 This is called extending the interface
 The derived interface must include the phrase

extends BaseInterfaceName

 A concrete class that implements a derived
interface must have definitions for any
methods in the derived interface as well as
any methods in the base interface

Java-07- 37

Extending an Interface

Java-07- 38

Defined Constants in Interfaces

 An interface can contain defined constants in
addition to or instead of method headings
 Any variables defined in an interface must be

public, static, and final
 Because this is understood, Java allows these

modifiers to be omitted

 Any class that implements the interface has
access to these defined constants

Java-07- 39

Inconsistent Interfaces

 In Java, a class can have only one base class
 This prevents any inconsistencies arising from

different definitions having the same method
heading

 In addition, a class may implement any
number of interfaces
 Since interfaces do not have method bodies,

the above problem cannot arise
 However, there are other types of

inconsistencies that can arise

Java-07- 40

Inconsistent Interfaces

 When a class implements two interfaces:
 One type of inconsistency will occur if the

interfaces have constants with the same
name, but with different values

 Another type of inconsistency will occur if the
interfaces contain methods with the same
name but different return types

 If a class definition implements two
inconsistent interfaces, then that is an error,
and the class definition is illegal

Java-07- 41

Inner Classes

 Inner classes are classes defined within
other classes
 The class that includes the inner class is

called the outer class
 There is no particular location where the

 definition of the inner class (or classes)
must be place within the outer class

 Placing it first or last, however, will
guarantee that it is easy to find

Java-07- 42

Inner Classes

 An inner class definition is a member of the
outer class in the same way that the instance
variables and methods of the outer class are
members
 An inner class is local to the outer class

definition
 The name of an inner class may be reused for

something else outside the outer class
definition

 If the inner class is private, then the inner
class cannot be accessed by name outside
the definition of the outer class

Java-07- 43

Inner Classes

 There are two main advantages to inner classes
 They can make the outer class more self-contained

since they are defined inside a class
 Both of their methods have access to each other's

private methods and instance variables
 Using an inner class as a helping class is one of

the most useful applications of inner classes
 If used as a helping class, an inner class should be

marked private

Java-07- 44

Inner and Outer Classes Have Access
to Each Other's Private Members
 Within the definition of a method of an inner class:

 It is legal to reference a private instance variable of the
outer class

 It is legal to invoke a private method of the outer class
 Within the definition of a method of the outer class

 It is legal to reference a private instance variable of the
inner class on an object of the inner class

 It is legal to invoke a (nonstatic) method of the inner
class as long as an object of the inner class is used as
a calling object

 Within the definition of the inner or outer classes, the
modifiers public and private are equivalent

Java-07- 45

Class with an Inner Class

Java-07- 46

Class with an Inner Class

Java-07- 47

Class with an Inner Class

Java-07- 48

The .class File for an Inner
Class
 Compiling any class in Java produces a
.class file named ClassName.class

 Compiling a class with one (or more) inner
classes causes both (or more) classes to be
compiled, and produces two (or more) .class
files
 Such as ClassName.class and
ClassName$InnerClassName.class

	Module 7
	Introduction to Polymorphism
	Late Binding
	Slide 4
	Upcasting and Downcasting
	Slide 6
	No Late Binding for Static Methods
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	The final Modifier
	Example: Late Binding with toString
	Slide 14
	An Object knows the Definitions of its Methods
	Downcasting
	Checking to See if Downcasting is Legitimate
	Introduction to Abstract Classes
	Slide 19
	Slide 20
	Slide 21
	Abstract Method
	Abstract Class
	Slide 24
	You Cannot Create Instances of an Abstract Class
	An Abstract Class Is a Type
	Interfaces
	Slide 28
	Slide 29
	The Ordered Interface
	Slide 31
	Implementation of an Interface
	Slide 33
	Abstract Classes Implementing Interfaces
	An Abstract Class Implementing an Interface
	Derived Interfaces
	Extending an Interface
	Defined Constants in Interfaces
	Inconsistent Interfaces
	Slide 40
	Inner Classes
	Slide 42
	Slide 43
	Inner and Outer Classes Have Access to Each Other's Private Members
	Class with an Inner Class
	Slide 46
	Slide 47
	The .class File for an Inner Class

