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Module 7

Polymorphism, Abstract Classes, and 
Interfaces
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Introduction to Polymorphism

 There are three main programming 
mechanisms that constitute object-oriented 
programming (OOP) 
 Encapsulation
 Inheritance
 Polymorphism

 Polymorphism is the ability to associate many 
meanings to one method name
 It does this through a special mechanism 

known as late binding or dynamic binding
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Late Binding

The process of associating a method 
definition with a method invocation is 
called binding

 If the method definition is associated 
with its invocation when the code is 
compiled, that is called early binding

 If the method definition is associated 
with its invocation when the method is 
invoked (at run time), that is called late 
binding or dynamic binding
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Late Binding

 Java uses late binding for all methods 
(except private, final, and static 
methods)

Because of late binding, a method can 
be written in a base class to perform a 
task, even if portions of that task aren't 
yet defined

For an example, the relationship 
between a base class called Sale and 
its derived class DiscountSale will be 
examined
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Upcasting and Downcasting

 Upcasting is when an object of a derived class is 
assigned to a variable of a base class (or any 
ancestor class)

Sale saleVariable; //Base class

DiscountSale discountVariable = new 

   DiscountSale("paint", 15,10); //Derived class

saleVariable = discountVariable; //Upcasting

System.out.println(saleVariable.toString());

 Because of late binding, toString above uses the 
definition given in the DiscountSale class
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Upcasting and Downcasting

 Downcasting is when a type cast is performed from a 
base class to a derived class (or from any ancestor 
class to any descendent class)
 Downcasting has to be done very carefully
 In many cases it doesn't make sense, or is illegal:

discountVariable =              //will produce

  (DiscountSale)saleVariable;//run-time error
discountVariable = saleVariable //will produce
                                //compiler error

 There are times, however, when downcasting is 
necessary, e.g., inside the equals method for a 
class:

Sale otherSale = (Sale)otherObject;//downcasting
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No Late Binding for Static Methods

 When the decision of which definition of a 
method to use is made at compile time, that is 
called static binding
 This decision is made based on the type of the 

variable naming the object
 Java uses static, not late, binding with private, 
final, and static methods
 In the case of private and final methods, 

late binding would serve no purpose
 However, in the case of a static method 

invoked using a calling object, it does make a 
difference
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No Late Binding for Static Methods

 The Sale class announcement() method:

public static void announcement( )
{
  System.out.println("Sale class");
}

 The DiscountSale class announcement() 
method:
public static void announcement( )
{
  System.out.println("DiscountSale class");
}
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No Late Binding for Static Methods

 In the previous example, the simple (Sale 
class) and discount (DiscountClass) 
objects were created

 Given the following assignment:
simple = discount;

 Now the two variables point to the same 
object

 In particular, a Sale class variable names a 
DiscountClass object
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 Given the invocation:
simple.announcement();

 The output is:

Sale class
 Note that here, announcement is a static 

method invoked by a calling object (instead 
of its class name)
 Therefore the type of simple is determined 

by its variable name, not the object that it 
references

No Late Binding for Static Methods
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No Late Binding for Static Methods

 There are other cases where a static method 
has a calling object in a more inconspicuous 
way

 For example, a static method can be invoked 
within the definition of a nonstatic method, but 
without any explicit class name or calling 
object

 In this case, the calling object is the implicit 
this
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The final Modifier

 A method marked final indicates that it 
cannot be overridden with a new definition in 
a derived class
 If final, the compiler can use early binding 

with the method

public final void someMethod() { . . . }

 A class marked final indicates that it  
cannot be used as a base class from which to 
derive any other classes
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 If an appropriate toString method is defined for a 
class, then an object of that class can be output using 
System.out.println

Sale aSale = new Sale("tire gauge", 
9.95);

System.out.println(aSale);

 Output produced: 

tire gauge Price and total cost = $9.95

 This works because of late binding

Example:  Late Binding with toString
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Example:  Late Binding with toString

 One definition of the method println takes a 
single argument of type Object:

public void println(Object theObject)
{
  System.out.println(theObject.toString());
}
 In turn, It invokes the version of println that 

takes a String argument
 Note that the println method was defined before 

the Sale class existed
 Yet, because of late binding, the toString method 

from the Sale class is used, not the toString 
from the Object class
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An Object knows the Definitions of its 
Methods
 The type of a class variable determines which 

method names can be used with the variable
 However, the object named by the variable 

determines which definition with the same 
method name is used

 A special case of this rule is as follows:
 The type of a class parameter determines 

which method names can be used with the 
parameter

 The argument determines which definition of 
the method name is used
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Downcasting

 It is the responsibility of the programmer 
to use downcasting only in situations 
where it makes sense
 The compiler does not check to see if 

downcasting is a reasonable thing to do
Using downcasting in a situation that 

does not make sense usually results in 
a run-time error
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Checking to See if Downcasting is 
Legitimate

 Downcasting to a specific type is only 
sensible if the object being cast is an instance 
of that type
 This is exactly what the instanceof operator 

tests for:
object instanceof ClassName

 It will return true if object is of type 
ClassName

 In particular, it will return true if object is an 
instance of any descendent class of 
ClassName
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Introduction to Abstract Classes

 While discussing Inheritance, the Employee base 
class and two of its derived classes, 
HourlyEmployee and SalariedEmployee were 
defined

 The following method is added to the Employee class
  It compares employees to to see if they have the 

same pay:
public boolean samePay(Employee other)
{
  return(this.getPay() == other.getPay());
}
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Introduction to Abstract Classes

 There are several problems with this method:
 The getPay method is invoked in the 
samePay method

 There are getPay methods in each of the 
derived classes

 There is no getPay method in the Employee 
class, nor is there any way to define it 
reasonably without knowing whether the 
employee is hourly or salaried
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Introduction to Abstract Classes

 The ideal situation would be if there were a 
way to 
 Postpone the definition of a getPay method 

until the type of the employee were known 
(i.e., in the derived classes)

 Leave some kind of note in the Employee 
class to indicate that it was accounted for

 Surprisingly, Java allows this using abstract 
classes and methods
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Introduction to Abstract Classes

 In order to postpone the definition of a 
method, Java allows an abstract method to 
be declared
 An abstract method has a heading, but no 

method body
 The body of the method is defined in the 

derived classes

 The class that contains an abstract method is 
called an abstract class
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Abstract Method

 An abstract method is like a placeholder for a 
method that will be fully defined in a 
descendent class

 It has a complete method heading, to which 
has been added the modifier abstract

 It cannot be private
 It has no method body, and ends with a 

semicolon in place of its body
public abstract double getPay();
public abstract void doIt(int count);
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Abstract Class

 A class that has at least one abstract method 
is called an abstract class
 An abstract class must have the modifier 
abstract included in its class heading:
public abstract class Employee
{
  private instanceVariables;
  . . .
  public abstract double getPay();
  . . .
}
  



 
Java-07- 24

Abstract Class

 An abstract class can have any number of 
abstract and/or fully defined methods

 If a derived class of an abstract class adds to 
or does not define all of the abstract methods, 
then it is abstract also, and must add 
abstract to its modifier

 A class that has no abstract methods is called 
a concrete class
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You Cannot Create Instances of an 
Abstract Class
 An abstract class can only be used to derive 

more specialized classes
 While it may be useful to discuss employees in 

general, in reality an employee must be a 
salaried worker or an hourly worker

 An abstract class constructor cannot be used 
to create an object of the abstract class
 However, a derived class constructor will 

include an invocation of the abstract class 
constructor in the form of super
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An Abstract Class Is a Type

 Although an object of an abstract class 
cannot be created, it is perfectly fine to have 
a parameter of an abstract class type
 This makes it possible to plug in an object of 

any of its descendent classes

 It is also fine to use a variable of an abstract 
class type, as long is it names objects of its 
concrete descendent classes only
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Interfaces

 An interface is something like an extreme case of an 
abstract class
 However, an interface is not a class
 It is a type that can be satisfied by any class that 

implements the interface
 The syntax for defining an interface is similar to that of 

defining a class
 Except the word interface is used in place of class

 An interface specifies a set of methods that any class that 
implements the interface must have
 It contains method headings and constant definitions 

only
 It contains no instance variables nor any complete 

method definitions
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Interfaces

An interface serves a function similar to a 
base class, though it is not a base class
 Some languages allow one class to be 

derived from two or more different base 
classes

 This multiple inheritance is not allowed in 
Java

 Instead, Java's way of approximating multiple 
inheritance is through interfaces
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Interfaces

 An interface and all of its method headings should 
be declared public
 They cannot be given private, protected, or 

package access
 When a class implements an interface, it must 

make all the methods in the interface public
 Because an interface is a type, a method may be 

written with a parameter of an interface type
 That parameter will accept as an argument any 

class that implements the interface
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The Ordered Interface
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Interfaces

 To implement an interface, a concrete class must 
do two things:

1. It must include the phrase
implements Interface_Name
at the start of the class definition
– If more than one interface is implemented, 

each is listed, separated by commas
1. The class must implement all the method 

headings listed in the definition(s) of the 
interface(s)

 Note the use of Object as the parameter 
type in the following examples 
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Implementation of an Interface
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Implementation of an Interface
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Abstract Classes Implementing 
Interfaces

Abstract classes may implement one or 
more interfaces
 Any method headings given in the 

interface that are not given definitions 
are made into abstract methods

A concrete class must give definitions 
for all the method headings given in the 
abstract class and the interface
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An Abstract Class Implementing an 
Interface
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Derived Interfaces

 Like classes, an interface may be derived 
from a base interface
 This is called extending the interface
 The derived interface must include the phrase

extends BaseInterfaceName

 A concrete class that implements a derived 
interface must have definitions for any 
methods in the derived interface as well as 
any methods in the base interface
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Extending an Interface
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Defined Constants in Interfaces

 An interface can contain defined constants in 
addition to or instead of method headings
 Any variables defined in an interface must be 

public, static, and final
 Because this is understood, Java allows these 

modifiers to be omitted

 Any class that implements the interface has 
access to these defined constants
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Inconsistent Interfaces

 In Java, a class can have only one base class
 This prevents any inconsistencies arising from 

different definitions having the same method 
heading

 In addition, a class may implement any 
number of interfaces
 Since interfaces do not have method bodies, 

the above problem cannot arise
 However, there are other types of 

inconsistencies that can arise
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Inconsistent Interfaces

 When a class implements two interfaces:
 One type of inconsistency will occur if the 

interfaces have constants with the same 
name, but with different values

 Another type of inconsistency will occur if the 
interfaces contain methods with the same 
name but different return types

 If a class definition implements two 
inconsistent interfaces, then that is an error, 
and the class definition is illegal
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Inner Classes

 Inner classes are classes defined within 
other classes
 The class that includes the inner class is 

called the outer class
 There is no particular location where the 

 definition of the inner class (or classes) 
must be place within the outer class

 Placing it first or last, however, will 
guarantee that it is easy to find
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Inner Classes

 An inner class definition is a member of the 
outer class in the same way that the instance 
variables and methods of the outer class are 
members
 An inner class is local to the outer class 

definition
 The name of an inner class may be reused for 

something else outside the outer class 
definition

 If the inner class is private, then the inner 
class cannot be accessed by name outside 
the definition of the outer class
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Inner Classes

 There are two main advantages to inner classes
 They can make the outer class more self-contained 

since they are defined inside a class
 Both of their methods have access to each other's 

private methods and instance variables
 Using an inner class as a helping class is one of 

the most useful applications of inner classes
 If used as a helping class, an inner class should be 

marked private
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Inner and Outer Classes Have Access 
to Each Other's Private Members
 Within the definition of a method of an inner class:

 It is legal to reference a private instance variable of the 
outer class

 It is legal to invoke a private method of the outer class
 Within the definition of a method of the outer class

 It is legal to reference a private instance variable of the 
inner class on an object of the inner class

 It is legal to invoke a (nonstatic) method of the inner 
class as long as an object of the inner class is used as 
a calling object

 Within the definition of the inner or outer classes, the 
modifiers public and private are equivalent
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Class with an Inner Class
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Class with an Inner Class
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Class with an Inner Class
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The .class File for an Inner 
Class
 Compiling any class in Java produces a 
.class file named ClassName.class

 Compiling a class with one (or more) inner 
classes causes both (or more) classes to be 
compiled, and produces two (or more) .class 
files
 Such as ClassName.class and 
ClassName$InnerClassName.class
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