
Adapted from Absolute Java, Rose Williams, Binghamton University

Module 10

Recursion

Java-10- 2

Recursive void Methods

 A recursive method is a method that includes
a call to itself

 Recursion is based on the general problem
solving technique of breaking down a task
into subtasks
 In particular, recursion can be used whenever

one subtask is a smaller version of the original
task

Java-10- 3

Vertical Numbers

 The static recursive method writeVertical takes
one (nonnegative) int argument, and writes that int
with the digits going down the screen one per line
 Note: Recursive methods need not be static

 This task may be broken down into the following two
subtasks
 Simple case: If n<10, then write the number n to

the screen
 Recursive Case: If n>=10, then do two subtasks:

 Output all the digits except the last digit
 Output the last digit

Java-10- 4

Vertical Numbers

 Given the argument 1234, the output of the
first subtask would be:
1
2
3

 The output of the second part would be:
4

Java-10- 5

Vertical Numbers

 The decomposition of tasks into subtasks can
be used to derive the method definition:
 Subtask 1 is a smaller version of the original

task, so it can be implemented with a
recursive call

 Subtask 2 is just the simple case

Java-10- 6

Algorithm for Vertical Numbers

 Given parameter n:
if (n<10)
 System.out.println(n);

 else
{
 writeVertical

 (the number n with the last digit removed);
 System.out.println(the last digit of n);
}
 Note: n/10 is the number n with the last digit

removed, and n%n is the last digit of n

Java-10- 7

A Recursive void Method (Part 1 of 2)

Java-10- 8

A Recursive void Method (Part 2 of 2)

Java-10- 9

Tracing a Recursive Call

 Recursive methods are processed in the
same way as any method call
writeVertical(123);
 When this call is executed, the argument 123

is substituted for the parameter n, and the
body of the method is executed

 Since 123 is not less than 10, the else part is
executed

Java-10- 10

Tracing a Recursive Call

 The else part begins with the method call:
writeVertical(n/10);

 Substituting n equal to 123 produces:
writeVertical(123/10);

 Which evaluates to
writeVertical(12);

 At this point, the current method computation is placed on
hold, and the recursive call writeVertical is executed
with the parameter 12

 When the recursive call is finished, the execution of the
suspended computation will return and continue from the
point above

Java-10- 11

Execution of writeVertical(123)

Java-10- 12

Tracing a Recursive Call

writeVertical(12);
 When this call is executed, the argument 12 is

substituted for the parameter n, and the body of the
method is executed

 Since 12 is not less than 10, the else part is
executed

 The else part begins with the method call:
writeVertical(n/10);

 Substituting n equal to 12 produces:
writeVertical(12/10);

 Which evaluates to
write Vertical(1);

Java-10- 13

Tracing a Recursive Call

 So this second computation of
writeVertical is suspended, leaving two
computations waiting to resume , as the
computer begins to execute another recursive
call

 When this recursive call is finished, the
execution of the second suspended
computation will return and continue from the
point above

Java-10- 14

Execution of writeVertical(12)

Java-10- 15

Tracing a Recursive Call

write Vertical(1);
 When this call is executed, the argument 1 is

substituted for the parameter n, and the body of the
method is executed

 Since 1 is less than 10, the if-else statement
Boolean expression is finally true

 The output statement writes the argument 1 to the
screen, and the method ends without making another
recursive call

 Note that this is the stopping case

Java-10- 16

Execution of writeVertical(1)

Java-10- 17

Tracing a Recursive Call

 When the call writeVertical(1) ends, the
suspended computation that was waiting for it
to end (the one that was initiated by the call
writeVertical(12)) resumes execution
where it left off

 It outputs the value 12%10, which is 2
 This ends the method
 Now the first suspended computation can

resume execution

Java-10- 18

Completion of
writeVertical(12)

Java-10- 19

Tracing a Recursive Call

 The first suspended method was the one that
was initiated by the call
writeVertical(123)

 It resumes execution where it left off
 It outputs the value 123%10, which is 3
 The execution of the original method call

ends
 As a result, the digits 1,2, and 3 have been

written to the screen one per line, in that
order

Java-10- 20

Completion of writeVertical(123)

Java-10- 21

A Closer Look at Recursion

 The computer keeps track of recursive calls
as follows:
 When a method is called, the computer plugs

in the arguments for the parameter(s), and
starts executing the code

 If it encounters a recursive call, it temporarily
stops its computation

 When the recursive call is completed, the
computer returns to finish the outer
computation

Java-10- 22

A Closer Look at Recursion

 When the computer encounters a recursive
call, it must temporarily suspend its execution
of a method
 It does this because it must know the result of

the recursive call before it can proceed
 It saves all the information it needs to continue

the computation later on, when it returns from
the recursive call

 Ultimately, this entire process terminates
when one of the recursive calls does not
depend upon recursion to return

Java-10- 23

General Form of a Recursive Method
Definition
 The general outline of a successful recursive

method definition is as follows:
 One or more cases that include one or more

recursive calls to the method being defined
 These recursive calls should solve "smaller"

versions of the task performed by the method
being defined

 One or more cases that include no recursive
calls: base cases or stopping cases

Java-10- 24

Infinite Recursion

 In the writeVertical example, the series
of recursive calls eventually reached a call of
the method that did not involve recursion (a
stopping case)

 If, instead, every recursive call had produced
another recursive call, then a call to that
method would, in theory, run forever
 This is called infinite recursion
 In practice, such a method runs until the

computer runs out of resources, and the
program terminates abnormally

Java-10- 25

Infinite Recursion

An alternative version of
writeVertical
 Note: No stopping case!

public static void
 newWriteVertical(int n)
{
 newWriteVertical(n/10);

 System.out.println(n%10);
}

Java-10- 26

Infinite Recursion

 A program with this method will compile and run
 Calling newWriteVertical(12) causes that

execution to stop to execute the recursive call
newWriteVertical(12/10)
 Which is equivalent to newWriteVertical(1)

 Calling newWriteVertical(1) causes that
execution to stop to execute the recursive call
newWriteVertical(1/10)
 Which is equivalent to newWriteVertical(0)

Java-10- 27

Infinite Recursion

 Calling newWriteVertical(0) causes that
execution to stop to execute the recursive call
newWriteVertical(0/10)
 Which is equivalent to
newWriteVertical(0)

 . . . And so on, forever!
 Since the definition of newWriteVertical

has no stopping case, the process will
proceed forever (or until the computer runs
out of resources)

Java-10- 28

Stacks for Recursion

 To keep track of recursion (and other things), most
computer systems use a stack
 A stack is a very specialized kind of memory structure

analogous to a stack of paper
 As an analogy, there is also an inexhaustible supply of extra

blank sheets of paper
 Information is placed on the stack by writing on one of these

sheets, and placing it on top of the stack (becoming the new
top of the stack)

 More information is placed on the stack by writing on another
one of these sheets, placing it on top of the stack, and so on

 To get information out of the stack, the top paper can be
read, but only the top paper

 To get more information, the top paper can be thrown away,
and then the new top paper can be read, and so on

Java-10- 29

Stacks for Recursion

 Since the last sheet put on the stack is the first sheet
taken off the stack, a stack is called a last-in/first-out
memory structure (LIFO)

 To keep track of recursion, whenever a method is
called, a new "sheet of paper" is taken
 The method definition is copied onto this sheet,

and the arguments are plugged in for the method
parameters

 The computer starts to execute the method body
 When it encounters a recursive call, it stops the

computation in order to make the recursive call
 It writes information about the current method on

the sheet of paper, and places it on the stack

Java-10- 30

Stacks for Recursion

 A new sheet of paper is used for the recursive
call
 The computer writes a second copy of the

method, plugs in the arguments, and starts to
execute its body

 When this copy gets to a recursive call, its
information is saved on the stack also, and a
new sheet of paper is used for the new
recursive call

Java-10- 31

Stacks for Recursion

 This process continues until some recursive call to
the method completes its computation without
producing any more recursive calls
 Its sheet of paper is then discarded

 Then the computer goes to the top sheet of paper on
the stack
 This sheet contains the partially completed

computation that is waiting for the recursive
computation that just ended

 Now it is possible to proceed with that suspended
computation

Java-10- 32

Stacks for Recursion

 After the suspended computation ends, the
computer discards its corresponding sheet of
paper (the one on top)

 The suspended computation that is below it
on the stack now becomes the computation
on top of the stack

 This process continues until the computation
on the bottom sheet is completed

Java-10- 33

Stacks for Recursion

 Depending on how many recursive calls are
made, and how the method definition is
written, the stack may grow and shrink in any
fashion

 The stack of paper analogy has its
counterpart in the computer
 The contents of one of the sheets of paper is

called a stack frame or activation record
 The stack frames don't actually contain a

complete copy of the method definition, but
reference a single copy instead

Java-10- 34

Stack Overflow

 There is always some limit to the size of the
stack
 If there is a long chain in which a method

makes a call to itself, and that call makes
another recursive call, . . . , and so forth, there
will be many suspended computations placed
on the stack

 If there are too many, then the stack will
attempt to grow beyond its limit, resulting in an
error condition known as a stack overflow

 A common cause of stack overflow is infinite
recursion

Java-10- 35

Recursion Versus Iteration

 Recursion is not absolutely necessary
 Any task that can be done using recursion can

also be done in a nonrecursive manner
 A nonrecursive version of a method is called

an iterative version
 An iteratively written method will typically use

loops of some sort in place of recursion
 A recursively written method can be simpler,

but will usually run slower and use more
storage than an equivalent iterative version

Java-10- 36

Iterative version of writeVertical

Java-10- 37

Recursive Methods that Return a
Value
 Recursion is not limited to void methods
 A recursive method can return a value of any type
 An outline for a successful recursive method that

returns a value is as follows:
 One or more cases in which the value returned is

computed in terms of calls to the same method
 the arguments for the recursive calls should be

intuitively "smaller"
 One or more cases in which the value returned is

computed without the use of any recursive calls
(the base or stopping cases)

Java-10- 38

Another Powers Method

 The method pow from the Math class
computes powers
 It takes two arguments of type double and

returns a value of type double
 The recursive method power takes two

arguments of type int and returns a value of
type int
 The definition of power is based on the

following formula:
xn is equal to xn-1 * x

Java-10- 39

Another Powers Method

 In terms of Java, the value returned by
power(x, n) for n>0 should be the same
as
power(x, n-1) * x

 When n=0, then power(x, n) should return
1
 This is the stopping case

Java-10- 40

The Recursive Method power (Part 1 of 2)

Java-10- 41

The Recursive Method power (Part 1 of 2)

Java-10- 42

Evaluating the Recursive Method Call
power(2,3)

Java-10- 43

Thinking Recursively

 If a problem lends itself to recursion, it is
more important to think of it in recursive
terms, rather than concentrating on the stack
and the suspended computations

power(x,n) returns power(x, n-1) * x

 In the case of methods that return a value,
there are three properties that must be
satisfied, as follows:

Java-10- 44

Thinking Recursively

1. There is no infinite recursion
– Every chain of recursive calls must

reach a stopping case
1. Each stopping case returns the correct value

for that case
2. For the cases that involve recursion: if all

recursive calls return the correct value, then
the final value returned by the method is the
correct value

 These properties follow a technique also
known as mathematical induction

Java-10- 45

Recursive Design Techniques

 The same rules can be applied to a
recursive void method:

1. There is no infinite recursion
2. Each stopping case performs the

correct action for that case
3. For each of the cases that involve

recursion: if all recursive calls perform
their actions correctly, then the entire
case performs correctly

Java-10- 46

Binary Search

 Binary search uses a recursive method to
search an array to find a specified value

 The array must be a sorted array:
a[0]≤a[1]≤a[2]≤. . . ≤ a[finalIndex]

 If the value is found, its index is returned
 If the value is not found, -1 is returned
 Note: Each execution of the recursive

method reduces the search space by about a
half

Java-10- 47

Binary Search

 An algorithm to solve this task looks at the
middle of the array or array segment first

 If the value looked for is smaller than the
value in the middle of the array
 Then the second half of the array or array

segment can be ignored
 This strategy is then applied to the first half of

the array or array segment

Java-10- 48

Binary Search

 If the value looked for is larger than the value in the
middle of the array or array segment
 Then the first half of the array or array segment

can be ignored
 This strategy is then applied to the second half of

the array or array segment
 If the value looked for is at the middle of the array or

array segment, then it has been found
 If the entire array (or array segment) has been

searched in this way without finding the value, then it
is not in the array

Java-10- 49

Pseudocode for Binary Search

Java-10- 50

Recursive Method for Binary
Search

Java-10- 51

Execution of the Method search (Part 1 of 2)

Java-10- 52

Execution of the Method search (Part 2 of 2)

Java-10- 53

Checking the search Method

1. There is no infinite recursion
• On each recursive call, the value of

first is increased, or the value of
last is decreased

• If the chain of recursive calls does not
end in some other way, then eventually
the method will be called with first
larger than last

Java-10- 54

Checking the search Method

2. Each stopping case performs the
correct action for that case

• If first > last, there are no array
elements between a[first] and
a[last], so key is not in this
segment of the array, and result is
correctly set to -1

• If key == a[mid], result is
correctly set to mid

Java-10- 55

Checking the search Method

3. For each of the cases that involve recursion, if all
recursive calls perform their actions correctly, then the
entire case performs correctly

• If key < a[mid], then key must be one of the elements
a[first] through a[mid-1], or it is not in the array

• The method should then search only those elements, which it
does

• The recursive call is correct, therefore the entire action is
correct

• If key > a[mid], then key must be one of the elements
a[mid+1] through a[last], or it is not in the array

• The method should then search only those elements, which it
does

• The recursive call is correct, therefore the entire action is
correct

Java-10- 56

Checking the search Method

The method search passes all three tests:
Therefore, it is a good recursive method

definition

Java-10- 57

Efficiency of Binary Search

The binary search algorithm is
extremely fast compared to an
algorithm that tries all array elements in
order
 About half the array is eliminated from

consideration right at the start
 Then a quarter of the array, then an

eighth of the array, and so forth

Java-10- 58

Efficiency of Binary Search

 Given an array with 1,000 elements, the binary
search will only need to compare about 10
array elements to the key value, as compared
to an average of 500 for a serial search
algorithm

 The binary search algorithm has a worst-case
running time that is logarithmic: O(log n)
 A serial search algorithm is linear: O(n)

 If desired, the recursive version of the method
search can be converted to an iterative
version that will run more efficiently

Java-10- 59

Iterative Version of Binary Search (Part 1 of 2)

Java-10- 60

Iterative Version of Binary Search (Part 2 of 2)

	Module 10
	Recursive void Methods
	Vertical Numbers
	Slide 4
	Slide 5
	Algorithm for Vertical Numbers
	A Recursive void Method (Part 1 of 2)
	A Recursive void Method (Part 2 of 2)
	Tracing a Recursive Call
	Slide 10
	Execution of writeVertical(123)
	Slide 12
	Slide 13
	Execution of writeVertical(12)
	Slide 15
	Execution of writeVertical(1)
	Slide 17
	Completion of writeVertical(12)
	Slide 19
	Completion of writeVertical(123)
	A Closer Look at Recursion
	Slide 22
	General Form of a Recursive Method Definition
	Infinite Recursion
	Slide 25
	Slide 26
	Slide 27
	Stacks for Recursion
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Stack Overflow
	Recursion Versus Iteration
	Iterative version of writeVertical
	Recursive Methods that Return a Value
	Another Powers Method
	Slide 39
	The Recursive Method power (Part 1 of 2)
	Slide 41
	Evaluating the Recursive Method Call power(2,3)
	Thinking Recursively
	Slide 44
	Recursive Design Techniques
	Binary Search
	Slide 47
	Slide 48
	Pseudocode for Binary Search
	Recursive Method for Binary Search
	Execution of the Method search (Part 1 of 2)
	Execution of the Method search (Part 2 of 2)
	Checking the search Method
	Slide 54
	Slide 55
	Slide 56
	Efficiency of Binary Search
	Slide 58
	Iterative Version of Binary Search (Part 1 of 2)
	Iterative Version of Binary Search (Part 2 of 2)

