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Module 10

Recursion
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Recursive void Methods

 A recursive method is a method that includes 
a call to itself

 Recursion is based on the general problem 
solving technique of breaking down a task 
into subtasks
 In particular, recursion can be used whenever 

one subtask is a smaller version of the original 
task 
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Vertical Numbers

 The static recursive method writeVertical takes 
one (nonnegative) int argument, and writes that int 
with the digits going down the screen one per line
 Note:  Recursive methods need not be static

 This task may be broken down into the following two 
subtasks
 Simple case:  If n<10, then write the number n to 

the screen
 Recursive Case:  If n>=10, then do two subtasks:

 Output all the digits except the last digit
 Output the last digit
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Vertical Numbers

 Given the argument 1234, the output of the 
first subtask would be:
1
2
3

 The output of the second part would be:
4
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Vertical Numbers

 The decomposition of tasks into subtasks can 
be used to derive the method definition:
 Subtask 1 is a smaller version of the original 

task, so it can be implemented with a 
recursive call

 Subtask 2 is just the simple case
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Algorithm for Vertical Numbers

 Given parameter n:
if (n<10)
  System.out.println(n);

 else
{
  writeVertical

      (the number n with the last digit removed);
  System.out.println(the last digit of n);
}
 Note:   n/10 is the number n with the last digit 

removed, and n%n is the last digit of n
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A Recursive void Method (Part 1 of 2)
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A Recursive void Method (Part 2 of 2)
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Tracing a Recursive Call

 Recursive methods are processed in the 
same way as any method call
writeVertical(123);
 When this call is executed, the argument 123 

is substituted for the parameter n, and the 
body of the method is executed

 Since 123 is not less than 10, the else part is 
executed
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Tracing a Recursive Call

 The else part begins with the method call:
writeVertical(n/10);

 Substituting n equal to 123 produces:
writeVertical(123/10);

 Which evaluates to
writeVertical(12);

 At this point, the current method computation is placed on 
hold, and the recursive call writeVertical is executed 
with the parameter 12

 When the recursive call is finished, the execution of the 
suspended computation will return and continue from the 
point above
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Execution of writeVertical(123)
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Tracing a Recursive Call

writeVertical(12);
 When this call is executed, the argument 12 is 

substituted for the parameter n, and the body of the 
method is executed

 Since 12 is not less than 10, the else part is 
executed

 The else part begins with the method call:
writeVertical(n/10);

 Substituting n equal to 12 produces:
writeVertical(12/10);

 Which evaluates to
write Vertical(1);
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Tracing a Recursive Call

 So this second computation of 
writeVertical is suspended, leaving two 
computations waiting to resume , as the 
computer begins to execute another recursive 
call

 When this recursive call is finished, the 
execution of the second suspended 
computation will return and continue from the 
point above
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Execution of writeVertical(12)
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Tracing a Recursive Call

write Vertical(1);
 When this call is executed, the argument 1 is 

substituted for the parameter n, and the body of the 
method is executed

 Since 1 is less than 10, the if-else statement 
Boolean expression is finally true

 The output statement writes the argument 1 to the 
screen, and the method ends without making another 
recursive call

 Note that this is the stopping case 
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Execution of writeVertical(1)
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Tracing a Recursive Call

 When the call writeVertical(1) ends, the 
suspended computation that was waiting for it 
to end (the one that was initiated by the call 
writeVertical(12)) resumes execution 
where it left off

 It outputs the value 12%10, which is 2
 This ends the method
 Now the first suspended computation can 

resume execution
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Completion of 
writeVertical(12)
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Tracing a Recursive Call

 The first suspended method was the one that 
was initiated by the call 
writeVertical(123)

 It resumes execution where it left off
 It outputs the value 123%10, which is 3
 The execution of the original method call 

ends
 As a result, the digits 1,2, and 3 have been 

written to the screen one per line, in that 
order
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Completion of writeVertical(123)
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A Closer Look at Recursion

 The computer keeps track of recursive calls 
as follows:
 When a method is called, the computer plugs 

in the arguments for the parameter(s), and 
starts executing the code

 If it encounters a recursive call, it temporarily 
stops its computation

 When the recursive call is completed, the 
computer returns to finish the outer 
computation
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A Closer Look at Recursion

 When the computer encounters a recursive 
call, it must temporarily suspend its execution 
of a method
 It does this because it must know the result of 

the recursive call before it can proceed
 It saves all the information it needs to continue 

the computation later on, when it returns from 
the recursive call

 Ultimately, this entire process terminates 
when one of the recursive calls does not 
depend upon recursion to return



 
Java-10- 23

General Form of a Recursive Method 
Definition
 The general outline of a successful recursive 

method definition is as follows:
 One or more cases that include one or more 

recursive calls to the method being defined
 These recursive calls should solve "smaller" 

versions of the task performed by the method 
being defined

 One or more cases that include no recursive 
calls:  base cases or stopping cases
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Infinite Recursion

 In the writeVertical example, the series 
of recursive calls eventually reached a call of 
the method that did not involve recursion (a 
stopping case)

 If, instead, every recursive call had produced 
another recursive call, then a call to that 
method would, in theory, run forever
 This is called infinite recursion
 In practice, such a method runs until the 

computer runs out of resources, and the 
program terminates abnormally
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Infinite Recursion

An alternative version of 
writeVertical
 Note:  No stopping case!

public static void
              newWriteVertical(int n)
{
  newWriteVertical(n/10);

  System.out.println(n%10);
}
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Infinite Recursion

 A program with this method will compile and run
 Calling newWriteVertical(12) causes that 

execution to stop to execute the recursive call 
newWriteVertical(12/10)
 Which is equivalent to newWriteVertical(1)

 Calling newWriteVertical(1) causes that 
execution to stop to execute the recursive call 
newWriteVertical(1/10)
 Which is equivalent to newWriteVertical(0)
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Infinite Recursion

 Calling newWriteVertical(0) causes that 
execution to stop to execute the recursive call 
newWriteVertical(0/10)
 Which is equivalent to 
newWriteVertical(0)

 . . . And so on, forever!
 Since the definition of newWriteVertical 

has no stopping case, the process will 
proceed forever (or until the computer runs 
out of resources)
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Stacks for Recursion

 To keep track of recursion (and other things), most 
computer systems use a stack
 A stack is a very specialized kind of memory structure 

analogous to a stack of paper
 As an analogy, there is also an inexhaustible supply of extra 

blank sheets of paper
 Information is placed on the stack by writing on one of these 

sheets, and placing it on top of the stack (becoming the new 
top of the stack)

 More information is placed on the stack by  writing on another 
one of these sheets, placing it  on top of the stack, and so on

 To get information out of the stack, the top paper can be 
read, but only the top paper

 To get more information, the top paper can be thrown away, 
and then the new top paper can be read, and so on
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Stacks for Recursion

 Since the last sheet put on the stack is the first sheet 
taken off the stack, a stack is called a last-in/first-out 
memory structure (LIFO)

 To keep track of recursion, whenever a method is 
called, a new "sheet of paper" is taken
 The method definition is copied onto this sheet, 

and the arguments are plugged in for the method 
parameters

 The computer starts to execute the method body
 When it encounters a recursive call, it stops the 

computation in order to make the recursive call
 It writes information about the current method on 

the sheet of paper, and places it on the stack
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Stacks for Recursion

 A new sheet of paper is used for the recursive 
call
 The computer writes a second copy of the 

method, plugs in the arguments, and starts to 
execute its body

 When this copy gets to a recursive call, its 
information is saved on the stack also, and a 
new sheet of paper is used for the new 
recursive call
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Stacks for Recursion

 This process continues until some recursive call to 
the method completes its computation without 
producing any more recursive calls
 Its sheet of paper is then discarded

 Then the computer goes to the top sheet of paper on 
the stack
 This sheet contains the partially completed 

computation that is waiting for the recursive 
computation that just ended

 Now it is possible to proceed with that suspended 
computation
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Stacks for Recursion

 After the suspended computation ends, the 
computer discards its corresponding sheet of 
paper (the one on top)

  The suspended computation that is below it 
on the stack now becomes the computation 
on top of the stack

 This process continues until the computation 
on the bottom sheet is completed
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Stacks for Recursion

 Depending on how many recursive calls are 
made, and how the method definition is 
written, the stack may grow and shrink in any 
fashion

 The stack of paper analogy has its 
counterpart in the computer
 The contents of one of the sheets of paper is 

called a stack frame or activation record
 The stack frames don't actually contain a 

complete copy of the method definition, but 
reference a single copy instead
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Stack Overflow

 There is always some limit to the size of the 
stack
 If there is a long chain in which a method 

makes a call to itself, and that call makes 
another recursive call, . . . , and so forth, there 
will be many suspended computations placed 
on the stack

 If there are too many, then the stack will 
attempt to grow beyond its limit, resulting in an 
error condition known as a stack overflow

 A common cause of stack overflow is infinite 
recursion
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Recursion Versus Iteration

 Recursion is not absolutely necessary
 Any task that can be done using recursion can 

also be done in a nonrecursive manner
 A nonrecursive version of a method is called 

an iterative version
 An iteratively written method will typically use 

loops of some sort in place of recursion
 A recursively written method can be simpler, 

but will usually run slower and use more 
storage than an equivalent iterative version
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Iterative version of writeVertical
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Recursive Methods that Return a 
Value
 Recursion is not limited to void methods
 A recursive method can return a value of any type
 An outline for a successful recursive method that 

returns a value is as follows:
 One or more cases in which the value returned is 

computed in terms of calls to the same method
 the arguments for the recursive calls should be 

intuitively "smaller"
 One or more cases in which the value returned is 

computed without the use of any recursive calls 
(the base or stopping cases)
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Another Powers Method

 The method pow from the Math class 
computes powers
 It takes two arguments of type double and 

returns a value of type double
 The recursive method power takes two 

arguments of type int and returns a value of 
type int
 The definition of power is based on the 

following formula:
xn is equal to xn-1 * x
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Another Powers Method

 In terms of Java, the value returned by 
power(x, n) for n>0 should be the same 
as
power(x, n-1) * x

 When n=0, then power(x, n) should return 
1
 This is the stopping case
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The Recursive Method power (Part 1 of 2)
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The Recursive Method power (Part 1 of 2)
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Evaluating the Recursive Method Call 
power(2,3)
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Thinking Recursively

 If a problem lends itself to recursion, it is 
more important to think of it in recursive 
terms, rather than concentrating on the stack 
and the suspended computations

power(x,n) returns power(x, n-1) * x

 In the case of methods that return a value, 
there are three properties that must be 
satisfied, as follows:
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Thinking Recursively

1. There is no infinite recursion
– Every chain of recursive calls must 

reach a stopping case
1. Each stopping case returns the correct value 

for that case
2. For the cases that involve recursion:  if all 

recursive calls return the correct value, then 
the final value returned by the method is the 
correct value

 These properties follow a technique also 
known as mathematical induction
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Recursive Design Techniques

 The same rules can be applied to a 
recursive void method:

1. There is no infinite recursion
2. Each stopping case performs the 

correct action for that case
3. For each of the cases that involve 

recursion:  if all recursive calls perform 
their actions correctly, then the entire 
case performs correctly
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Binary Search

 Binary search uses a recursive method to 
search an array to find a specified value

 The array must be a sorted array:
a[0]≤a[1]≤a[2]≤. . . ≤  a[finalIndex]

 If the value is found, its index is returned
 If the value is not found, -1 is returned
 Note:  Each execution of the recursive 

method reduces the search space by about a 
half
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Binary Search

 An algorithm to solve this task looks at the 
middle of the array or array segment first

 If the value looked for is smaller than the 
value in the middle of the array
 Then the second half of the array or array 

segment can be ignored
 This strategy is then applied to the first half of 

the array or array segment
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Binary Search

 If the value looked for is larger than the value in the 
middle of the array or array segment
 Then the first half of the array or array segment 

can be ignored
 This strategy is then applied to the second half of 

the array or array segment
 If the value looked for is at the middle of the array or 

array segment, then it has been found
 If the entire array (or array segment) has been 

searched in this way without finding the value, then it 
is not in the array
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Pseudocode for Binary Search
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Recursive Method for Binary 
Search
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Execution of the Method search (Part 1 of 2)
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Execution of the Method search (Part 2 of 2)
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Checking the search Method

1. There is no infinite recursion
• On each recursive call, the value of 

first is increased, or the value of 
last is decreased

• If the chain of recursive calls does not 
end in some other way, then eventually 
the method will be called with first 
larger than last
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Checking the search Method

2. Each stopping case performs the 
correct action for that case

• If first > last, there are no array 
elements between a[first] and 
a[last], so key is not in this 
segment of the array, and result is 
correctly set to -1

• If key == a[mid], result is 
correctly set to mid
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Checking the search Method

3. For each of the cases that involve recursion, if all 
recursive calls perform their actions correctly, then the 
entire case performs correctly

• If key < a[mid], then key must be one of the elements 
a[first] through a[mid-1], or it is not in the array

• The method should then search only those elements, which it 
does

• The recursive call is correct, therefore the entire action is 
correct

• If key > a[mid], then key must be one of the elements 
a[mid+1] through a[last], or it is not in the array

• The method should then search only those elements, which it 
does

• The recursive call is correct, therefore the entire action is 
correct
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Checking the search Method

The method search passes all three tests:
Therefore, it is a good recursive method 

definition
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Efficiency of Binary Search

The binary search algorithm is 
extremely fast compared to an 
algorithm that tries all array elements in 
order
 About half the array is eliminated from 

consideration right at the start
 Then a quarter of the array, then an 

eighth of the array, and so forth
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Efficiency of Binary Search

 Given an array with 1,000 elements, the binary 
search will only need to compare about 10 
array elements to the key value, as compared 
to an average of 500 for a serial search 
algorithm

 The binary search algorithm has a worst-case 
running time that is logarithmic:    O(log n)
 A serial search algorithm is linear:  O(n)

 If desired, the recursive version of the method 
search can be converted to an iterative 
version that will run more efficiently
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Iterative Version of Binary Search (Part 1 of 2)
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Iterative Version of Binary Search (Part 2 of 2)
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