

ISA 563: Fundamentals of Systems
Programming

Advanced IO

April 9, 2012

Non-blocking IO
● Data processing can be much faster than data

access
● Waiting for IO to finish can be time consuming, and

may not even finish

● Reads from files can block the caller forever if
data is not present:

● Reading from a FIFO with no input

● Distributed processing complicates things further:
● Remote host could be down
● Remote host could be busy
● ...

Non-blocking IO (cont'd)

● In blocking IO, a request is blocked until it is
satisfied.

● In non-blocking IO, a request returns
immediately with apprioate return code.

● Ways to open a file for non-blocking IO:
● pass O_NONBLOCK flag when opening file
● call fcntl on an open file descriptor to turn on

O_NONBLOCK status flag

Demo

non_blocking.c

Record Locking

● What happens when two people edit the same
file at the same time?

● File content will depend on the last process that
write to that file (on most Unix/Linux systems)

● Need a way to get exclusive access:
● Use some kind of inter-process locking

mechanism, e.g., semaphores
● Lock down the file altogether using flock (2)

● File-level locking can be inefficient
● Two processes could be using two different

portions of a file at the same time

Record Locking (cont'd)

● Record locking allows multiple processes to
lock different regions of a file at the same time

● The kernel itself has no notion of “records” in a
file:

● Kernel only recognizes byte-ranges within a file

● POSIX chose to standardize on fcntl() for
record locking (or more precisely byte-range
locking)

flock (2)

#include <sys/file.h>

int flock(int fd, int operation);

Operation is one of:

 LOCK_SH: place a shared lock
 LOCK_EX: place an exclusive lock
 LOCK_UN: remove an existing lock held by process

● flock (2) applies or removes an advisory lock on
an open file.

● A file cannot be locked if any one of the locks is
exclusive

fcntl(2)

#include <fcntl.h>
int fcntl(int filedes, int cmd, ... /* struct flock *flp */)

struct flock {
 short l_type; /* F_RDLCK, F_WRLCK, or F_UNLCK */
 off_t l_start; /* offset in bytes, relative to l_whence */
 short l_whence; /* SEEK_SET, SEEK_CUR, or SEEK_END */
 off_t l_len; /* length, in bytes; 0 means lock to EOF */
 pid_t l_pid; /* returned with F_GETLK */
 };

cmd is on of F_GETLK, F_SETLK, or F_SETLKW

fnctl (2) permission rules

(Image courtesy of Advanced Programming in the Unix Environment)

Demo: File locking vs. Record
locking

flock.c
rlock.c

Multiple IO Scenarios

● A process can be handling multiple file
descriptors concurrently:

● A server handling multiple clients concurrently
● A server that handles multiple services
● A server using both TCP and UDP
● A client handling both user input and network IO

at the same time

I/O Models

● I/O models available under Unix/Linux systems:
● blocking I/O
● nonblocking I/O
● I/O multiplexing
● signal driven I/O
● asynchronous I/O

Blocking I/O
Application Kernel

system call

data ready

copy complete

copy data

wait for data

copy data

return OK

process blocks

Solutions for Handling Multiple IO Concurrently

● Spawn a new process [using fork()]

● process overhead, signal handling
● Use multiple threads

● has to handle synchronization
● Use non-blocking IO

● has to keep polling, wastes CPU
● Use asynchronous IO

● cannot descriminate between multiple file
descriptors using AIO

● IO Multiplexing

● complicates code somewhat

IO Multiplexing

● A single process handles multiple file
descriptors

● If no file descriptor is ready, process blocks
● If any file descriptor is ready, process handles

that file descriptor
– Process still waits for kernel to copy data to user

space

● Process can choose from following options:
● indefinite blocking
● immediate return
● return if nothing is ready until a timeout happens

IO Multiplexing Functions

#include <sys/select.h>
int select(int maxfdp1, fd_set *readfds, fd_set *writefds,
fd_set *exceptset, const struct timeval *timeout);

#include <sys/select.h>
int pselect(int maxfdp1, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, const struct timespec *restrict tsptr,
const sigset_t *restrict sigmask);

#include <poll.h>
int poll(struct pollfd fdarray[], nfds_t nfds, int timeout);

select() system call

● select() allows a program to monitor multiple file
descriptors.

● select() blocks until one the following occurs:
● any of the descriptors in the readset becomes

ready for reading
● any of the descriptors in the writeset becomes

ready for writing
● any of the descriptors in exceptset has an

exception condition pending
● a timeout value was set and is expired

Macros Supporting select()

● Main data type: fd_set
● fd_set fds;

● Macros:

● FD_ZERO(&fds) // initialize set, all bits off

● FD_SET(7, &fds) // turn on bit for fd 7

● FD_ISSET(3, &fds) // check if fd 3 is turned on

● FD_ZERO(5, &fds) // turn off bit for fd 5

Timeouts for select()

● Time struct data structure:

● Three possibilities based on time value:
● Wait forever: happens if a NULL pointer is

passed
● Wait up to fixed amount of time: struct specifies

a non-zero time
● Do not wait at all: struct specifices a zero value

struct timeval {
 long tv_sec;
 long tv_usec;
}

Demo

stdin_timeout.c

Demo

multiplexed_echo_server.c

readv() and writev() functions

ssize_t readv(int filedes, const struct iovec *iov, int iovcnt);
ssize_t writev(int filedes, const struct iovec *iov, int iovcnt);

struct iovec {
 void *iov_base;
 size_t iov_len;
 };

(Image courtesy of Advanced Programming in the Unix Environment)

Memory-mapped IO

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

