

ISA 563: Fundamentals of Systems
Programming

Complex Data Types

Jan. 29, 2013

Outline

● Recall primitive data types
● Explore complex data types

● struct
● enum
● union
● bit fields

Primitive Types

● char, int, float, double
● Fine for basic primitive types
● Building blocks for more complex types that we

will discuss

Complex Types

● What about a type that
● has multiple dimensions or properties
● are aggregates of primitive types

● Storage model doesn't work very well
● how do you store a complex type in 1 32-bit

memory cell
– you don't (usually)

Example: represent an MP3

● A simple int does not cut it
● Multiple properties about 1 single logical entity

/* some properties for an MP3 */
char file_name[256] = {0};
char audio_name[256] = {0}
long length = 0;
int bit_rate = 144; // kbps

Repeating Properties

● Will “run out” of variable names
● Parallel maintenance of data
● Need a template for this logical collection of

data

A Structure (struct keyword)

● Collection of logically-related data

struct mp3_audio
{
 char file_name[256];
 char audio_name[256];
 long length;
 int bit_rate;
 char data[1000000];
}

Enumerations

● A way to declare a set of constants
● Has scope

enum days {MON, TUES, WED, THUR, FRI, SAT, SUN};

enum months {Jan = 1, Feb, Mar, Apr, May, Jun,
 Jul, Aug, Sept, Oct, Nov, Dec};

enum {FALSE=0, TRUE, false=0, true=1};

Unions

● Like a struct, but has multiple personalities
depending on context:

union pet
{
 char cat;
 int bird;
 float turtle;
}

Struct vs. Union

● Struct contains all things at once
● distinct cells allocated for all members

● Union
● memory allocated for the largest member
● union instance is treated as only 1 member at a

“time”
● programmer must keep track
● size depends on the largest member

Demo

pi.c

typedef

typedef union _packet_flags
{
 int tcp_opts;
 short udp_opts;
 char open_opts;
} PacketFlags;

typedef struct _packet
{
 Header header;
 PacketFlags flags;
 Payload payload;
 struct _packet* _next;
} Packet;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

