mentals of Systems
ramming

n & Repetition Statements

Jan 22, 2013

Outline

es, arrays, string handling
ommand line arguments
* Control Flow (break, return, continue)

* Decision Statements (if, else, switch, case)
Boolean expressions

* Repetition Statements (for, while)
Array processing

ords In C

or, do
to, case, default
char

unsigned, register, const,
, atic, auto

ypedef, struct, union, enum, sizeof

return, void

ntrol Flow

e of instructions executed
order of the source listing
de go into statement

")

Ing Control Flow

e evaluation of a boolean
licit keyword

ange control flow:

Decide on a choice between alternatives
Repeat the current block of statements
Unconditional jump

Boolean Expressions (review)

» Boolean expressions are any valid C
expression that evaluates to an integer value

e The value zero Is taken to mean 'false’

Any other value is 'true’, although 1 (one) is
used most often by convention

* Programs can make a decision between two
different flows of control based on the result of
a boolean expression

Also based on the value of computation

If

an operator that evaluates a
n and conditionally executes
tement block immediately
he condition evaluates to

1f (expression)

{

// code to execute if expression is true

else

uates to ‘false’, then the code
ody of the 'if' are note executed.

flow 'falls through' the if

. Imes, we want to execute code If the
condition Is false. This is accomplished with 'else":

1f (condition) {
// codel

} else A
// code?

}

witch

t allows you to pick from

lue = 0;
ta value) A

// do something
break;

case 1:
// do something else
break;

default:

// do safe thing

Looping and Repetition

» Often, you want to execute the same set of
statements multiple times

Reading input
Drawing graphics
Calculating something

* Need a way to 'loop’ or repeat

_oop control variable
nitialization

ncrement/decrement/loop control maintenance
condition

hile

llows for looping while a

while (1)
{

}

// loop forever

int counter = 0;
int 1limit = 10;

while (counter < limit)

{

printf (“counter == %$d\n”, counter);
counter++;

}

for

like 'while' but gathers the
0 a single statement

nter < limit; counter++)

printf (“counter == %d\n”, counter);

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

