ISA 563: Fundamentals of Systems Programming

Hashing and Encryption

April 16, 2012

Hashing

- Hashing is a deterministic mapping from variable-sized input data to a fixed sized output
 - a procedure that performs such a mapping is called a hash function
- Since input size is infinite, and output size is finite:
 - Output is only a digest (checksum) of input, and input cannot (normally) be restored from output
 - there will be collisions:
 - A collision is a scenario where to different inputs hash to the same output

Hashing Functions

- Ideal properties of hash functions:
 - should be easy to compute
 - should make collision infeasible:
 - should be hard to find another message the same hash function
 - should be hard to alter current message without changing the hash
 - should be hard to find two different messages with the same hash

Hash Functions (cont'd)

- What do hash functions give us?
 - Just as many other fucntions, hash functions has a many to one mapping from input to output
 - Scenario: we apply the same hash function to two sets of input data:
 - if the two hash values are different, then the two input data sets are different
 - if the two hash values are the same, they the inputs are probably the same
 - degree of certainty depends on the hash function used
 - although can never be sure, should be enough for "practical" purposes

md5sum, sha1sum

Encryption

- Encryption is the transformation of an input to an output that can only be read by those who possess the correct key.
- Terminology:
 - plaintext: original input to be encrypted
 - ciphertext: encrypted output
 - key: a piece of data used for encryption/decryption
 - cipher: algorithm used to encrypt data

Encryption (cont'd)

• Simple model:

- Encryption:
 - Enc = E(input, k1)
- Decryption:
 - Dec = D(input, k2)
- Types:
 - Symmetric encryption:
 - k1 = k2
 - Assymetric encryption:
 - k1 != k2

Symmetric vs Assymetric Encryption

- Symmetric:
 - Both parties use the same key
 - key is shared
 - Faster encryption / decryption
 - Examples: DES, Triple-DES, IDEA, TWOFISH, BLOWFISH
- Assymmetric:
 - Use a pair of keys:
 - private key: kept secret by the owner
 - public key: published to everyone
 - Much slower than symmetric encryption
 - Examples: RSA, DSA, ELGAMAL

mcrypt library

- libmcrypt is a library that provides a uniform interface to several symmetric encryption algorithms:
 - DES
 - 3DES
 - RIJNDEAL
 - Twofish
 - IDEA
 - GOST
 - SAFER+,
 - Blowfish

. . . .

blowfish.c