

ISA 563: Fundamentals of Systems
Programming

Inter-process Communication

April 3, 2012

Inter-process Communication (IPC)

● IPC is used to pass data among processes
● Different mechanisms for different levels of

communication:
● Between related processes
● Between processes inside the same host
● Between processes inside different hosts

connection through network

● Some IPC mechanisms may require
synchronization

IPC Mechanisms

● Shared files
● Pipes
● FIFOs
● Message queues
● Shared memory
● Sockets:

● Local (Unix domain sockets)
● Remote (TCP/UDP)

● Remote procedure calls

Persistence of IPC Objects

● process-persistent IPC:
● Exists until last process with IPC object closes

the object

● kernel-persistent IPC:
● Exists until reboots or is explicitly deleted

● filesystem-persistent IPC:
● Exists until IPC object is explicitly deleted

Pipes

● Pipes provide a communication mechanism
between related processes (parent/child
relationship)

● Child inherits file descripters to communicate
with parent

● Pipes can be accessed using normal file
system functions:

● read()
● write()

pipe()

#include <unistd.h>

int pipe(int filedes[2]);

● Two file descriptors are returned:
– fd[0] – opened for reading
– fd[1] – opened for writing

pipe() (cont'd)

● View inside a single process:

(Figure Courtesy of Advanced Programming in the Unix Environment)

pipe() (cont'd)

● What happens when process forks after calling
pipe(int fieldes[2])?

(Figure Courtesy of Advanced Programming in the Unix Environment)

Half-duplex Communication using
Pipes

● Parent close one file descriptor and child closes
the other depending desired direction of data
flow:

● parent → child:
– parent closes fd[0]
– child closes fd[1]

● child → parent
– parent closes fd[1]
– child closes fd[0]

Parent → Child Half-duplex

(Figure Courtesy of Advanced Programming in the Unix Environment)

Demo

hello_pipe.c

Demo

pager.c

FIFOs

● FIFOs: first in, first out queues
● Addresses pipe's limitations – allows two

unrelated processes to communicate on the
same host

● Visible inside file system

● Common uses:
● Used by shell to pass data from one process to

another (through shell pipelines)
● Used as rendezvous point between clients and

servers

mkfifo

// mkfifo (3) system call

#include <sys/stat.h>
int mkfifo(const char *pathname, mode_t mode);

$ # mkfifo (1) command
$ mkfifo fifo1

$ cat fifo1

$ yes “hello” > fifo1 # in another terminal

FIFOs in Client/Server Interaction

(Figure Courtesy of Advanced Programming in the Unix Environment)

Message Queues

● Linked list of messages stored within the kernel

● APIs:
● msgget – open an existing queue or create one
● msgsnd – add a message to message queue
● msgget – retrieve a message from message

queue

Shared Memory

● Two or more processes share a piece of
memory in user space

● No kernel involvement
● Fastest form of IPC available
● Read/write access has to be synchronized

Semaphores

● A protected variable used to controlling access to
shared resources

● Similar to mutexes, but can have integer values
associated:

● process calls sem_wait:
– if semaphore value is larger than 0, decrease value

and return immediatelly
– if semaphore value is 0, block until value is larger

than 0

● process call sem_post:
– increase semaphore value and return immediately

● Can have “binary” and “counting” semaphores

Demo

shmem.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

