

ISA 563: Fundamentals of Systems
Programming

Static and Shared Libraries

Feb. 5, 2013

Libraries

● A library is file containing one or more object
files

● Typically indexed for fast symbol lookups

● Helpful for code reuse
● Decreases compilation time
● Two types of libraries:

● static
● shared (dynamic)

Shared vs Static Libraries

● Static library
● Included in the application binary
● Can be used by multiple apps, but each one will

include its own copy
● Avoids missing library issues
● Increases disk usage
● Hard to update

Static vs Shared Libraries (Cont'd)

● Shared library
● Not included in the application executable
● Can be shared by multiple application
● Saves space
● Easy to update
● Can cause library misses
● Compiler only checks to make sure that no

symbols are missing
● Library is loaded at run time by the system

loader

Static Libraries

● A collection of object files

$ gcc -c util_str.c -o util_str.o
$ gcc -c util_net.c -o util_net.o
$ ar rc libutil.a util_str.o util_net.o
$ ranlib libutil.a # may not be necessary

$ gcc main.o -L. -lutil -o prog

or

$ gcc main.c -o prog libutil.a

Shared Libraries

$ gcc -fPIC -c util_str.c
$ gcc -fPIC -c util_net.c
$ gcc -shared -o libutil.so util_str.o util_net.o

$ gcc main.o -L. -lutil -o prog

$ ldd prog # list linked shared libraries

Loader search shared libraries in system
specified directories.

LD_LIBRARY_PATH environment variable tell the
loader to look into other directories.

Demo

main.c sutil_str.c, sutil_net.c ...

Using a Shared Library Dynamically

● The “dl” library
● Load a shared library
● Reference its symbols
● Call its functions
● Detach it from process

● dlopen() -- open shared library
● dlsym() -- open a reference to a symbol

● reference can be used to call library function

● dlclose() -- detach library from process

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

