

ISA 563: Fundamentals of Systems
Programming

Modularity and Information Hiding

Feb. 12, 2013

Modularity

● Splitting the software in separate modules
● Separation of concerns
● Maintainability
● Code re-use
● Only modified modules need to be re-compiled
● Easier to isolate bugs
● Easier to edit

Modularity (Cont'd)

● Goal:
● Minimal dependency between modules

– Ability to change one module without affecting
others

– Hide information as much as possible
– Isolate implementation in logical, self-contained

units

Modularity in C

● No strong support for modularity in C
● A file represents a module
● However, we can use existing features to our

benefit:
● Header (.h) files for exporting function

prototypes and common declarations
– Represents a contract
– Shares common declarations

● Source (.c) files for implementations

Demo

stack1.c

stack1: analysis

● Everything in the same file
● Hard to re-use implementation
● Hard to test/debug separately
● ...

● Suggested improvement:
● Separate stack-related implementation

Demo

main2.c, stack2.h, stack2.c

Stack2: analysis

● Advantages:
● Separate stack implementation as a module

– Easier to re-use
– Easier to test/debug

● Disadvantages:
● Only one global stack that can be used

● Suggested improvement:
● Allow multiple stack instances

Demo

main3.c, stack3.h, stack3.c

Stack3: analysis

● Advantages:
● Modular
● Allows multiple stack instances

● Disadvantages:
● Still exposes the stack struct (information)

● Suggested improvement:
● Hide all implementation details

Demo

main4.c, stack4.h, stack4.c

Stack4: analysis

● Advantages
● Modular
● Supports multiple stack instances
● Implementation details completely hidden

● Uses “opaque pointers”
● Hides structures
● Even if we know the struct declaration, we

cannot de-reference its members from outside

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

