
THREADS &
SYNCHRONIZATION

ISA 563: Fundamentals of Systems Programming

Major Thread Environments

  UNIX: pthreads library

  Java: Thread class, Runnable interface

  Intel Thread Building Blocks Library
 http://www.threadingbuildingblocks.org/

documentation.php

Reasons to Use Threads

  Threads typically involve less overhead (memory & CPU
time) than a full process
 All threads “within” a process share the same memory as the

containing process and each other
  The overhead of “fork(2)” is avoided
 Context switching (time for OS to “give” the CPU to another

process) between multiple processes is avoided

  Threads can more naturally reflect independent but
related subtasks of an algorithm or process
  Potential for parallel execution & some speedup

High Level: What is a Thread?

  Threads represent an independent control flow
within a process

  How threads are implemented often depends on the
underlying thread library and operating system

  POSIX defines a standard thread API to manage
the lifecycle of a thread as well as synchronization
primitives

Logical Thread Content

  Threads typically contain the following state:
 A thread ID tid
 Scheduling data: policy & priority
 A set of registers (i.e., CPU state), including:

 A program counter (keep track of which instruction the
thread is executing)

 A stack (independent of the process’s stack and any other
threads within the process)

 Their own errno
 Their own signal mask set

Mapping Threads to Code

  Threads execute code independently; more than 1
thread can simultaneously execute the same
assembly instructions

  In other words, source code doesn’t necessarily
“belong” to any one thread
 The association of code to threads can change

dynamically during runtime

Major Issue: Synchronized Access

  Two or more threads, in executing the same
program statements simultaneously, might access
(i.e., read or write) the same data items
 Because thread execution ordering is unpredictable

(just like process scheduling), consistency is
unpredictable

 Program correctness is then questionable
 Thread APIs (pthreads, Java’s Thread object and

synchronization primitives) often provide ways to control
or synchronize access to shared data

Two Threads Sorting Same Data

for(gap=len/2;
 gap>0;
 gap/=2)

 for(i=gap;
 i<len;
 i++)

 for(j=i-gap;
 j>=0 &&
data[j]>data[+gap];
 j-=gap)

 swap(data[i], data[i+gap]);

for(gap=len/2;
 gap>0;
 gap/=2)

 for(i=gap;
 i<len;
 i++)

 for(j=i-gap;
 j>=0 &&
data[j]>data[+gap];
 j-=gap)

 swap(data[i], data[i+gap]);

Thead 1: shell_sort(data, len) Thread 2: shell_sort(data, len)

EIP of thread 2

EIP of thread 1

Solution? Locking and Synchronization

  The main idea is to provide atomic operations that
govern permission to enter a critical section
 Atomic operations are operations that execute in a

single machine clock cycle and cannot be interrupted at
any point in their execution

 A critical section is a section of code that manipulates
shared data items and must be made thread-safe in
order to ensure program correctness

 Specifics of how pthread library does it later…

Background: Atomic Operations

  A single line of C code corresponds to multiple
assembly (machine) instructions

  Even a single machine instruction may not execute in
1 clock cycle!

Mapping C to ASM Instructions

int main(int argc,
 char *argv[])
{
 int c = c + 1;
 return c;
}

 .text
.globl _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 leal -12(%ebp), %eax
 incl (%eax)
 movl -12(%ebp), %eax
 leave
 ret

C Code ASM Code

Mapping ASM to Clock Cycles

 .text
.globl _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 leal -12(%ebp), %eax
 incl (%eax)
 movl -12(%ebp), %eax
 leave
 ret

LEA: Load Effective
Address: 2 cycles

INC: Increment by 1: 1 or
2 cycles

MOV: Copy 2nd operand
to 1st operand: cycles
vary

ASM Code Instruction Mneumonic

Highlights of Security Issues

  Privilege Separation between threads
  Information leaks & covert channels
  TOCTTOU (time-of-check-to-time-of-use) errors
  Memory leaks or double-free errors due to

mismanagement of reference counters
  DoS due to deadlock (internal mismanagement of

control paths leading to lock-acquiring mis-ordering)

Creating Threads

Tracking of Thread ID

Terminating & Joining Threads

Operating with Threads

Comparing Process & Thread Lifecycles

  fork(2)
  atexit(2)
  _exit(2)
  waitpid(2)
  getpid(2)

  pthread_create
  pthread_cleanup_push
  pthread_exit
  pthread_join
  pthread_self

Process Functions Thread Functions

Thread Creation

The ‘pthread_create(3)’ function is a pthread library
function that instructs the operating system to create
a thread in the current process’s context

Operating Systems can do this (i.e., map threads to
OS processes) in many ways
 Linux uses clone(), so 1 thread per process

Thread Creation & Running

  Threads do not follow the fork/exec pattern for
Unix processes

  Instead, when they are created, they are explicitly
assigned a section of code to begin executing via
the 3rd argument of pthread_create, a function
pointer

Thread Identification

  int pthread_equal(pthread_t tid1, pthread_t tid2);

  pthread_t pthread_self(void);

Why a function to compare pthread IDs?
 Because the pthread_t type can be a structure
 (not necessarily an integer like pid_t)

Terminating Threads

  Use pthread_exit: extinguish current thread
  Use pthread_join: extinguish target thread

(i.e., join with caller)
  Use pthread_cancel to request that another target

thread be extinguished
  Threads can register shutdown hooks via:

 Using pthread_cleanup_push()
 Using pthread_cleanup_pop()

Using pthread_exit

  Allows a thread to terminate itself
  Can pass back a pointer to a return value:

 pthread_exit((void*)RETURN_CODE);

  Return value can also be a structure
 But be careful that it is a valid pointer!
 For example, variables local to the thread stack may

be destroyed by the time the caller uses the thread’s
return structure value

  See Figure 11.4, page 362..364

Thread Shutdown Hooks

  Similar to atexit(3) process exit handlers
  Calls to pthread_cleanup_push and

pthread_cleanup_pop must match in the source
code

  These might be implemented as macros

  Figure 11.5 in APUE

Mutexes

Reader-writer locks (shared-exclusive locks)

Condition variables

Synchronization Mechanisms

Synchronization with Mutexes

  Mutual Exclusion: mutex
 A property whereby a resource is available to only 1

thread at a time. A mutex is a data item that represents
a ‘lock’ on a resource

  Threads must acquire the mutex before
manipulating the resource
 This is a convention only: the OS and hardware do not

enforce access on a data item --- the calling thread
must be cooperative and include the calls to the mutex
acquisition routines!

Caveats

  Threads can ignore mutexes and just access the
data

  Threads can race to acquire the mutex itself

  Ordering of mutex acquisition and release must be
the same across potentially many code paths;
deadlock can occur when an infrequently-exercised
code path (and thus series of mutex acquisitions) is
executed by multiple threads

Using pthread Mutex Variables

  Static Allocation:
pthread_mutex_t mlock = PTHREAD_MUTEX_INITIALIZER;

  Dynamic Allocation:
Use pthread_mutex_init after malloc of a pthread_mutex_t

pointer
Must use pthread_mutex_destroy before freeing mutex

pointer

  Lock / Unlock
pthread_mutex_lock(&mlock);
//critical section, update shared data
pthread_mutex_unlock(&mlock);

Can’t Afford to Block?

  Use pthread_mutex_trylock
 The calling thread can return without block from this

function
  It can then decide whether to try again, essentially

looping on the mutex, or continue on some other
processing path

Reader-Writer Locks

  A better name is “shared-exclusive”
 Three modes of access:

  “read”: multiple threads can read this resource
  “write”: a single thread locks resource to write to it
  “open”: unlocked

  Finer-grained than unlocked/locked of mutexes
 But has potential to starve writers if a high rate of

readers occurs; some implementations handle this
 Suitable for data structures that are read more often

than they are updated

Condition Variables

  Customize locking based on state of the shared
data

  When condition is satisfied, a signal is sent to
interested threads

Summary: Take-Home Message

  Threads provide a mechanism for allowing a single,
monolithic piece of source code to accomplish
multiple independent or dependent subtasks
concurrently

  Concurrency introduces challenges with regards to
consistency of critical data items
 Synchronization primitives provide a means to protect

critical sections of code, but the burden rests on the
programmer to use them correctly

Summary: Things to Consider

  Why use threads instead of fork?
  Do threads guarantee mutual exclusion?
  How would you find bugs (e.g., TOCTTOU) in multi-

threaded code?
  Do threads always require locking?
  Can a single thread cause the entire process to

terminate?

