mentals of Systems
amming

ced IO

April 9, 2012



Non-blocking 10

» Data processing can be much faster than data
access

Waiting for 10 to finish can be time consuming, and
may not even finish

e Reads from files can block the caller forever If
data Is not present:

Reading from a FIFO with no input
 Distributed processing complicates things further:

Remote host could be down
Remote host could be busy



Non-blocking 10 (cont'd)

* |In blocking IO, a request is blocked until it is
satisfied.

* |n non-blocking 10, a request returns
Immediately with apprioate return code.

* Ways to open a file for non-blocking IO:

pass O _NONBLOCK flag when opening file

call fcntl on an open file descriptor to turn on
O_NONBLOCK status flag



INg.C




Record Locking

* \WWhat happens when two people edit the same
file at the same time?

File content will depend on the last process that
write to that file (on most Unix/Linux systems)

 Need a way to get exclusive access:

Use some kind of inter-process locking
mechanism, e.g., semaphores

Lock down the file altogether using flock (2)
* File-level locking can be inefficient

Two processes could be using two different
portions of a file at the same time



Record Locking (cont'd)

* Record locking allows multiple processes to
lock different regions of a file at the same time

e The kernel itself has no notion of “records” in a
file:

Kernel only recognizes byte-ranges within a file

*» POSIX chose to standardize on fcntl() for
record locking (or more precisely byte-range
locking)



ck (2)

moves an advisory lock on

cked If any one of the locks is

#include <sys/f1i



#include <fcntl.h>
int fcntl(int filedes, int cmd,

cmd 1s on of F_GETLK, F_SETLK, or

struct flock {




fnctl (2) permission rules

Request for

| read lock v.-'riteh}[:k

Lne or maore

denied
read locks
one write denied denied
lﬂLL

Region currently has




King vs. Record
King

.C
rlock.c



le |O Scenarios

e handling multiple file
urrently:

dling multiple clients concurrently
A server that handles multiple services
A server using both TCP and UDP

A client handling both user input and network 10
at the same time



Models

under Unix/Linux systems:

nal driven 1/O
asynchronous I/O



Blocking 1/O

|

data ready

copy data

|

copy complete




Solutions for Handling Multiple 10 Concurrently

» Spawn a new process [using fork()]
process overhead, signal handling

Use multiple threads

has to handle synchronization
Use non-blocking 1O

has to keep polling, wastes CPU

Use asynchronous IO

cannot descriminate between multiple file
descriptors using AIO

IO Multiplexing
complicates code somewhat



IO Multiplexing

* A single process handles multiple file
descriptors

If no file descriptor Is ready, process blocks

If any file descriptor Is ready, process handles
that file descriptor

Process still waits for kernel to copy data to user
space

* Process can choose from following options:
iIndefinite blocking
Immediate return
return If nothing Is ready until a timeout happens



Ing Functions

#include <sys/select.h>
int (int maxfdpl, fd_set
fd_set *exceptset, const struct

#include <sys/select.h>
' (1nt me

poll



select() system call

» select() allows a program to monitor multiple file
descriptors.

» select() blocks until one the following occurs:

any of the descriptors in the readset becomes
ready for reading

any of the descriptors in the writeset becomes
ready for writing

any of the descriptors in exceptset has an
exception condition pending

a timeout value was set and Is expired



pporting select()

set

FD_ZERO(&fds) // initialize set, all bits off
FD_SET(7, &fds) // turn on bit for fd 7
FD_ISSET(3, &fds) // check if fd 3 1s turned on
FD_ZERO(5, &fds) // turn off bit for fd 5



uts for select()

tructure:

ree possibilities based on time value:

Wait forever: happens if a NULL pointer is
passed

Wait up to fixed amount of time: struct specifies
a non-zero time

Do not wait at all: struct specifices a zero value



out.c




mo

10_Sserver.c




readv() and writev() functions

ior [0] .iov_base buffer()
iov (0] . ; - -
o [1] . 1ov

bufferl
or(l) .1

nl =

i

o [foveni=1] . iov base buffer!

foe [foreni=1] . i







	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

