

ISA 563: Fundamentals of Systems
Programming

Arrays and Character Strings

Jan. 29, 2013

Outline

● Arrays
● Data collection for multiple objects of the same

type

● Strings
● Array of characters: common and important

enough to discuss separately
● String operations
● String literals and string constants

● Command line argument processing

Simple Data Collections

● Store a students grade:
● int jacks_grade = 90;

● What if we have 100 students?
● int student0_grade = 0;
● int student1_grade = 0;
● int student2_grade = 0;
● …
● int student99_grade = 0;

Whew!

Arrays

● Arrays are typed collections of the same data
type

● Arrays allow for grouping of data under one
common name

● Array elements are accessed by giving an
offset or index into the array

● Offsets (indexes) are always integer values
● it does not make sense to say “give me the

value at element number 3.58”

Array Organization

● Arrays have a name
● e.g., student_grades

● Arrays have a size
● not the number of elements in the array, but

rather how much memory the array takes up

● Array have a length
● in C, this length is not stored with the array.

You, the programmer, must keep track of it
● no bounds checking while accessing the array

● Array elements must be consistently typed

Accessing Arrays Elements

● Each element is at a unique position in the array

● position is indicated by the subscript or index
value

● the value of the subscript or index is NOT the
value the element at that index or position

int student_grades[100];
student_grades[0] = 98;
student_grades[45] = 85;
student_grades[99] = 79;

Declaring an Array

● Very similar to declaring a single variable of
that type:

● Just add brackets and size:

// declare an integer variable
int my_integer;

 // declare an integer array
 int my_integers[400];

type name size (number of elements)

Initializing an Array

● There are several ways to initialize the data in
an array.

● at definition
– int temperatures[] = {89, 54, 100, 23, -12};

● compiler will figure out the size

● an explicit loop
for (i = 0; i < array_size; i++) {

 my_array[i] = 0;

}

● series of statements
int i = 0;

my_array[i++] = 0;

my_array[i++] = 0;

...

Array Notes

● Index:
● Arrays start indexing from 0, not 1
● thus, the array has the maximum index of

(length-1)

● C does not check array bounds
● Compiler and the execution environment do

not check out-of-bound reads and writes.
Such operations are not what you wanted to
do, and are errors most of the time.

Advanced Array Topics

● There are other ways to access array
elements

● We'll see one when we cover pointers

● Arrays can be nested:
● Arrays of arrays
● Just add more []s per dimension
● A two-dimensional array is an array of arrays,

or a table

Multi-dimensional Arrays

// declare a two dimensional array of integers
int no_students = 100;
int no_subjects = 7;

int class_grades[no_students][no_subjects];
// or
int class_grades[100][7];

// access an element by providing subscripts
class_grades[45][6]=86;

// print the 6th student's grade on 5th subject:
printf(“%d\n”, class_grades[5][4]);

Strings

● Strings are arbitrarily long sequences of
characters

● C keeps many things as simple as possible
● strings are not first class data objects
● strings are simply character arrays
● have to keep some rules in mind when

operating on strings

● Just remember that a string is always an array
of characters (and treat it as such) and you'll be
fine

Character Basics

● Characters in C are 8-bit (1-byte) values that
sometimes be treated like small integers

● How many unique integer values can you
specify with 8 bits?

● In a program, you may represent a character
like:

char somechar = 'B';

but numbers work equally well:

char anotherchar = 66;

Example of Strings

● You've seen some strings before:
● String literals: a sequence of characters in

quotation marks inside the text or body of a
program:

printf(“result is %d\n”, result);

the “result is %d\n” is a string literal
● A character array is the other common way to

refer to a string
char student_name[30];

String Notes

● In order to truly treat a character array as a
string, you must make sure that it is null-
terminated

● the last character in the array must be a null
character

● the null character is written as '\0' (backslash
zero)

● recall the '\n' for newlines
● the C compiler automatically null-terminates

string literals

Char arrays as … char arrays

● Every string is a character array

● Not every character array is string
● character arrays are just collection of chars
● can hold any legal char value (8 bits of

information)
● interpretation depends on context
● the data stored in a character array does not need

to be treated like a string
● nevertheless, you can still treat it like a string. C

allows you to shoot yourself in the foot if you
really want to

String Operations

● Many basic string operations are tedious to write

● So these operations are provided as functions in the
standard C library

● to use them you program should

#include <string.h>

● Operations include:

● strlen (return the length of the string)
● strncmp (compare two string lexicographically)
● strncpy (copy on string to another)

String Properties

● The length of the string
● the number of characters in the string, NOT

counting the '\0' (null terminator)

● Strings are compared by comparing their basic
elements: the characters that they contain

● compared in lexicographic order

● Semantics are consistent when you deal with
multi-dimensional char arrays:

char class_names[100][30]; is an array of
character arrays (array of strings)

String Comparison

calling
 strncmp(“hello”, “hello”, 5);
return 0, because the strings are equal

calling
 strncmp(“yes”, “nah”, 3)
returns a positive number, because the strings are
different, and “yes” is lexicographically greater
than “nah”

calling
 strncmp(“nah”, “yes”, 3)
return a negative number, because the strings are
different and “nah” is lexicographically less than
“yes”

What are return values of:
strncmp(“hello”, “hello!”, 5)
and
strcmp(“hello”, “hello!”);

Command Line Input

● One way to supply input to your program
● Data is provided by execution environment

● How do you refer to it in your code?

● C provides a place for this input:
● argc: an integer specifying the number of args
● argv: an array of strings holding actual values

Demo

argtest.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

