

ISA 563: Fundamentals of Systems
Programming

Authorization and Authentication

Mar. 19, 2012

Authorization and Authentication

● Authentication:
● Who is the user
● Is the user who he/she is claiming to be?

● Authorization:
● Can the user perform operation O on a resource

R?

Authentication Methods

● Different ways for authentication:
● Password database
● Card readers
● Biometric information
● …

● Authentication in programs should be flexible:
● Should support changes in an authentication

method
● Should support changes in the methods of

authentication

PAM: Pluggable Authentication Modules

● Purpose:
● To separate the development of privilege

granting software from the development of
secure and appropriate authentication
schemes

● How it is done:
● By providing a library of functions that an

application may use to request that a user be
authenticated.

(From Linux−PAM System Administrator's Guide)

PAM (cont'd)

● Advantages:
● Easy to write authentication programs
● Easy to change authentication methods
● Flexilibity in determining who is allowed to use a

service

Demo

pam_auth.c

Authorization

● File system:
● Read, write, exec permissions for:

– Owning user
– Group
– Others

● Special permissions:
– Sticky bit (directories only)
– Setuid bit

● Different semantics for files and directories

System APIs

● Changing file permissions

 #include <sys/stat.h>

 int chmod(const char *path, mode_t mode);
 int fchmod(int fd, mode_t mode);

example 1:

 chmod(“prog”, S_IRUSR | S_IXUSR);

example 2:

 int fd = open(“prog”, O_RDWR);
 fchmod(fd, S_IRUSR | S_IXUSR);

Demo

modperm.c

System APIs (cont'd)

● Reading Permissions

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <unistd.h>

 int stat(const char *path, struct stat *buf);
 int fstat(int fd, struct stat *buf);
 int lstat(const char *path, struct stat *buf);

permstat.c

Demo

Authorization (cont'd)

● Processes
● User IDs:

– Real ID
– Effective ID

● Group Ids:
– Real group id
– Effective group id

Process IDs

● Every process has two user IDs:
● Real user ID
● Effective user ID

● Same for group IDs
● Real UID represents the “original” user id (as

returned by getuid() call)
● Kernel only cares about effective UID for most

tasks

Changing User IDs

● A process with effective UID of 0 can change its
UIDs to any value that it wants

● Any other process can only do one of the
following:

● Set its effective UID to be same as its real UID
● Set is real UID to be same as its effective UID
● Swap the two user IDs

System APIs

● Getting information:

● Changing UIDs:

#include <unistd.h>
#include <sys/types.h>

uid_t getuid(void);
uid_t geteuid(void);

#include <sys/types.h>
#include <unistd.h>

int setuid(uid_t uid);
int seteuid(uid_t uid);
int setreuid(uid_t uid);

Demo

my_su.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

