THE C STANDARD LIBRARY
&

MAKING YOUR OWN
LIBRARY




Overview: the Standard Library

A language is:

The grammar of the language (keywords, operators,
expressions, etc.)

The execution environment (e.g., an OS, JVM, CLR)
A library of supporting functions

“Language design is library design.”
-- Bjarne Stroustrup

Example: Java (very large obiject library and API)

Hint: read the man pages for the C library functions!



What is a Library?

A collection of functions with a common purpose

The collection provides a well—defined standard
interface or APl to the library’s core purpose:

/O

Math
Graphics/GUI
Crypto

...many others



Header Files

Header files are C source files that hold the
definition of functions and data structures

Header files end in “.h”

The C standard library is composed of many
header files as well as their corresponding
implementation (i.e., .c ) files

You know one already: stdio.h



Example: “Standard 1/O”

Basic C data types provide storage for data when
it is “in” your program’s memory space

Collections of data: structs, arrays, unions (last lecture)

What about feeding data into these variables and
sending data to other programs or files on disk?

Streams or collections of bytes

Files



Basic Concepts of Unix Files

No markup (contrast with NTFS files)
Every byte is addressable

Access is byte by byte (char by char)
Can perform “random” access (cover this later)
Treat a file as a stream or sequence of bytes

Everything in Unix is a file (in one form or another)
So file /O is important in C programs

...and so is having a robust, standard way of manipulating
data in files!



C Programs and “Standard” Files

Every C program is given 3 files automatically
Standard output (what you see on screen)
Standard input (usually attached to keyboard device)

Standard error (also usually on screen)

But via the “magic” of Unix, can be easily
redirected to or from other sources and sinks

Shell redirection

See ‘dup’ system call



Naming “Standard” Files

The header file <stdio.h> defines three handles to
these objects (of type FILE, a struct)

Stdin
stdout

stderr

These are variable names you can use in any code
that “includes” stdio.h



Interesting | /O Functions

Char output: putchar(), getchar(), putc(), getc()
String input /output: fprintf(), fscanf()
File |/O:

fopen() / fclose()

fread() / fwrite()

These are different from the OS system calls: open,
close, read, write

They operate on C library FILE objects rather than OS-
level file descriptors



The FILE Structure Abstraction

A data type defined in stdio.h

A struct named FILE

A common data type for use with most of the C1/O
library functions

So library design involves designing and defining
appropriate data structures as well as functions

See page 176 in TCPL for the definition



Opening Files: Who Knows What?¢

Key Idea: translate a file name to something the OS
can manipulate

The C library steps in the way

Concept stack
A filename: a character sequence humans understand

A FILE object: something your program (via stdio.h)
understands

A file descriptor (an integer the OS uses to keep track
of unique file handles)



Opening Files via stdio.h

/ /consult ‘man fopen’ for details!
#Hinclude <stdio.h>
//two arguments: ‘file name’ and ‘mode’

FILE* fin = fopen(“/tmp/name”,
“rb,’);

/ /now ‘fin’ represents a valid FILE object, right?

//wrong! ... need to test the result of fopen()!
if(NULL==fin){... //an error occurred, handle it



Contract vs. Implementation

fopen’s contract is:

Give me a valid file path and a mode (read, write,
append, truncate, etc., see man page) AND | might
return to you a valid pointer to a valid FILE object

How does C library do all that?
It doesn’t do it all. It asks the OS for help.



Contract vs. Implementation 2

Many standard library functions employ a system

call (some don't) to help accomplish the underlying
task

System calls define the OS’s API

A collection of services the OS will provide to
application programs

But can be tedious to use and set up

So C library is a higher level of abstraction



Contract vs. Implementation 3
fopen employs the ‘open()’ system call

//see ‘man 2 open’

int open(const char® pathname, int flags);



- Other C Libraries




Character manipulation
Hinclude <ctype.h>
isascii(int), islower(int), isupper(int), isdigit(int)...

tolower(int), toupper(int)...



String Manipulation

#Hinclude <string.h>
Defines the symbol NULL

Memory copy routines, the strlen() routine, string
tokenization, some error output routines, ... more on

those when we get to memory management



stdlib.h

Collection of many utility functions
exit, abort, atoi, atof, system()

malloc, callocg, realloc, free (will talk about these in a
later lecture, not now...)

geteny, puteny, sefenv

rand, srand



errno.h

Defines a list of standard error names (rather than
keeping track of error numbers...)

Defines the ‘errno’ integer variable

‘perror()’ from stdio.h is related (but in a different
library)

Get in the habit of testing errno’s valuel



math.h

Defines common math symbols (pi, e, etc.)

Defines values for representing limits of primitive
types (INFINITY, NAN, etc.)

Defines tan, cos, sin, exp, abs, floor, ceil, log, round,

efc.



- Create Your Own Library




Anyone Can Create a Library

Just a collection of:
Contract definitions
Symbol and data type definitions

Function implementations

Components:
Header files

Library binary (or source) files



Note: Library Interception

Linking is not done until runtime

Can dynamically replace function implementations
“DLL Injection”

“Library interposition”

Unix: LD_PRELOAD environment variable

Affects search path for library function implementation



