
THE C STANDARD LIBRARY
&
MAKING YOUR OWN
LIBRARY

ISA 563: Fundamentals of Systems Programming

Overview: the Standard Library

  A language is:
 The grammar of the language (keywords, operators,

expressions, etc.)
 The execution environment (e.g., an OS, JVM, CLR)
 A library of supporting functions

  “Language design is library design.”
-- Bjarne Stroustrup

  Example: Java (very large object library and API)
  Hint: read the man pages for the C library functions!

What is a Library?

  A collection of functions with a common purpose

  The collection provides a well—defined standard
interface or API to the library’s core purpose:
  I/O
 Math
 Graphics/GUI
 Crypto
 …many others

Header Files

  Header files are C source files that hold the
definition of functions and data structures
 Header files end in “.h”

  The C standard library is composed of many
header files as well as their corresponding
implementation (i.e., .c) files
 You know one already: stdio.h

Example: “Standard I/O”

  Basic C data types provide storage for data when
it is “in” your program’s memory space
 Collections of data: structs, arrays, unions (last lecture)

  What about feeding data into these variables and
sending data to other programs or files on disk?
 Streams or collections of bytes
 Files

Basic Concepts of Unix Files

  No markup (contrast with NTFS files)
  Every byte is addressable

  Access is byte by byte (char by char)
 Can perform “random” access (cover this later)
  Treat a file as a stream or sequence of bytes

  Everything in Unix is a file (in one form or another)
  So file I/O is important in C programs
 …and so is having a robust, standard way of manipulating

data in files!

C Programs and “Standard” Files

  Every C program is given 3 files automatically
 Standard output (what you see on screen)
 Standard input (usually attached to keyboard device)
 Standard error (also usually on screen)

  But via the “magic” of Unix, can be easily
redirected to or from other sources and sinks
 Shell redirection
 See ‘dup’ system call

Naming “Standard” Files

  The header file <stdio.h> defines three handles to
these objects (of type FILE, a struct)
 Stdin
  stdout
  stderr

  These are variable names you can use in any code
that “includes” stdio.h

Interesting I/O Functions

  Char output: putchar(), getchar(), putc(), getc()
  String input/output: fprintf(), fscanf()
  File I/O:

  fopen() / fclose()
  fread() / fwrite()

  These are different from the OS system calls: open,
close, read, write

 They operate on C library FILE objects rather than OS-

level file descriptors

The FILE Structure Abstraction

  A data type defined in stdio.h

  A struct named FILE
 A common data type for use with most of the C I/O

library functions
 So library design involves designing and defining

appropriate data structures as well as functions

  See page 176 in TCPL for the definition

Opening Files: Who Knows What?

  Key Idea: translate a file name to something the OS
can manipulate
 The C library steps in the way

  Concept stack
 A filename: a character sequence humans understand
 A FILE object: something your program (via stdio.h)

understands
 A file descriptor (an integer the OS uses to keep track

of unique file handles)

Opening Files via stdio.h

//consult ‘man fopen’ for details!
#include <stdio.h>
//two arguments: ‘file name’ and ‘mode’
FILE* fin = fopen(“/tmp/name”,

 “rb”);
//now ‘fin’ represents a valid FILE object, right?
//wrong! … need to test the result of fopen()!
if(NULL==fin){… //an error occurred, handle it

Contract vs. Implementation

  fopen’s contract is:
 Give me a valid file path and a mode (read, write,

append, truncate, etc., see man page) AND I might
return to you a valid pointer to a valid FILE object

  How does C library do all that?
  It doesn’t do it all. It asks the OS for help.

Contract vs. Implementation 2

  Many standard library functions employ a system
call (some don’t) to help accomplish the underlying
task

  System calls define the OS’s API
 A collection of services the OS will provide to

application programs
 But can be tedious to use and set up
 So C library is a higher level of abstraction

Contract vs. Implementation 3

  fopen employs the ‘open()’ system call

//see ‘man 2 open’
int open(const char* pathname, int flags);

Other C Libraries

Character manipulation

  #include <ctype.h>

  isascii(int), islower(int), isupper(int), isdigit(int)…

  tolower(int), toupper(int)…

String Manipulation

  #include <string.h>
  Defines the symbol NULL
  Memory copy routines, the strlen() routine, string

tokenization, some error output routines, … more on
those when we get to memory management

stdlib.h

  Collection of many utility functions
 exit, abort, atoi, atof, system()
 malloc, calloc, realloc, free (will talk about these in a

later lecture, not now…)
 getenv, putenv, setenv
  rand, srand

errno.h

  Defines a list of standard error names (rather than
keeping track of error numbers…)

  Defines the ‘errno’ integer variable

  ‘perror()’ from stdio.h is related (but in a different
library)

  Get in the habit of testing errno’s value!

math.h

  Defines common math symbols (pi, e, etc.)
  Defines values for representing limits of primitive

types (INFINITY, NAN, etc.)
  Defines tan, cos, sin, exp, abs, floor, ceil, log, round,

etc.

Create Your Own Library

Anyone Can Create a Library

  Just a collection of:
 Contract definitions
 Symbol and data type definitions
  Function implementations

  Components:
 Header files
 Library binary (or source) files

Note: Library Interception

  Linking is not done until runtime
  Can dynamically replace function implementations

 “DLL Injection”
 “Library interposition”

  Unix: LD_PRELOAD environment variable
 Affects search path for library function implementation

