

ISA 563: Fundamentals of Systems
Programming

Dynamically Loaded Libraries

March 4, 2014

Dynamically Loaded (DL) Libraries

● A way to load and use library functions at
runtime:

● Libraries are loaded after program startup
● Program can start without dynamic libraries
● Program can discover and load extra

functionalities
● Program can unload libraries when they are no

longer needed

DL Libraries (Cont'd)

● No special difference between dynamic and
static libraries in file format

● The main difference is that DL libraries are
loaded at runtime through system APIs:

● Under most Unix/Linux systems:
– dlfcn.h

● Windows systems use completely different
interface with DLLs

Unix/Linux DL Interface

● Header inclusion:
● #include <dlfcn.h>

● Compilation
● $ gcc foo.c -o prog -ldl

Unix/Linux DL Interface (Cont'd)

● Functions:
● void * dlopen(const char *filename, int flag);

– Opens and prepares a library

● void * dlsym(void *handle, char *symbol);

– Looks up symbol from opened library

● int dlclose(void *handle);

– Closes opened library

● char *dlerror(void);

– Returns error message from previous dl*
call

Demo

dynmath.c, statmath.c

Library Interposition

● Dynamic linker:
● Loads and links shared libraries when a

program is executed

● Environment variables that affects dynamic
linker:

● LD_LIBRARY_PATH
– Lists directories to be search first (before

standard library paths)
● LD_PRELOAD

– Lists shared library files to be used first

Library Interposition (Cont'd)

● No modification to application binary is
necessary

● Useful scenarios:
● Testing new libraries
● Debugging
● Profiling
● Monitering
● Other fun stuff

Interposing a Function Call

● Example: interpose a function: int foo(int n);
/*
 * bar.c – interposes function foo
 */
#include <stdio.h>
#include <dlfcn.h>

int foo(int n)
{
 static int (*f)();

 if(!f) {
 f = (int (*)()) dlsym(RTLD_NEXT, "foo");
 }
 printf("foo(%d) is called\n", m);
 return(f(n));
}

Interposing a Function Call (cont'd)

● compile:
● gcc -shared -o bar.so bar.c -ldl

● usage:
● LD_PRELOAD=bar.so app_that_uses_foo

● The program app_that_uses_foo does not need be
modified in any way

Demo

imalloc.c, ifile.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

