

ISA 563: Fundamentals of Systems
Programming

Variables, Primitive Types, Operations,
Expressions, and Control Flow

Jan. 28, 2014

Outline

● Expressions
● Data representation

– Variable name

– Variable type

● Primitive types
● Operations on variables

Readings

● TCPL Section 1.2:
– Variables and Arithmetic Expressions

● TCPL Chapter 2
– Types, Operators, and Expressions

Expressions

● A C program is a sequence of statements
● A C program is a collection of functions and

the data that those functions operate on
● The building block of statements are

expressions: combination of language
keywords, function calls, operators, and
operands that evaluate to a value

Review: What is a Program?

● A program is a sequence of instructions that
operate on data

● A C program is a collection of variables
functions that process the data held in those
variables

● Computers process long strings of 0's and 1's
– Need a way to refer to portions of those strings

as higher-level data objects

Variables

What exactly is a Variable?

● A variable is the concept of a piece of
structured data that can be accessed (read or
modified) via well-known, standard rules

● A variable is NOT JUST the data it contains!
● A variable also has:

– A name or identifier that provides a way to refer
to it

– A type that defines its size (how much memory
it uses)

– A location or memory address specifying where
the data is stored

Example: Simple Integer Values

● Suppose we want to write a program for
processing students' grades

● Need a variable to hold the total scores:
– total_score:

● Pattern:
– Variable name:

valuevalue

3456

Example: Variable Declaration

● Declaring a variable is a standard action to let
the rest of the program know about a piece of
data that will be used

● The following program statement declares
(that is, tells the computer to set aside a
memory location for) an integer variable called
'total_score':

 int total_score;

type variable name

Declaring Variables

● Variables are usually declared at the beginning of the
program or function they are used in

● Variable names can be any combination of letters,
numbers, or underscores, but must start with a letter
or underscore:

– Valid names: i, total_score, round2, _test

– Invalid names: $id, 2nd, total score
● Variable names should be descriptive; avoid names

like 'ab', 'x', 'tmp', etc., unless for a good reason

● Make sure you don't try to name a variable after a
reserved work (if, for, while, case, switch ...)

Subtle Points about Variable Names

● When you program, you see the variable name
● When the computer executes your program, it

actually sees the variable memory address
● In both cases, the data is used behind the

scenes

Types

Variable Types

● A type is a hint to the computer on how to handle the
data contained in or referred to by the variable

– Usually this involves size of the storage allocated
● There are 4 basic primitive types in C:

– int (regular integers)
– char (1 character)
– float (single precision floating point number)
– double (double precision floating point number)

Type Modifiers

● Types can be augmented by additional
information

● Some simple “type qualifiers” are listed below:
– short (applied to int)
– long (applied to int and double)
– signed

– unsigned (only non-negative values)
– const (specifies that the value cannot be

changed)
● We usually drop the 'int' when specifying short or long

showsize demo

Output (sizes are in # of bytes)

mabdulla% ./size
 Data Type Size Bytes Min Value Max Value
 char 1 -128 127
 unsigned char 1 0 255
 short 2 -32768 32767
 int 4 -2147483648 2147483647
 long 4 -2147483648 2147483647
 long long 8 -9223372036854775808 9223372036854775807
 float 4 1.17549e-38 3.40282e+38
 double 8 2.22507e-308 1.79769e+308
 long double 12 3.3621e-4932 1.18973e+4932
mabdulla%

Consttest demo

Language Operators

Operators Overview

● You are familiar with many operators from
basic math and logic:

– Addition (+), subtraction (-), multiplication (*),
division (/)

– AND (&&), OR (||), NOT (!)

● Operators are basically common functions that
take their input and produce some output

● Common enough to have their own symbols in
a programming language (see above)

Operators (Cont'd)

● C has many operators
– Some you are familiar with (see previous page)

– Some not: mod, bitwise AND, OR, XOR,
relational

● Operators are:
– Unary (take one argument, e.g.: !-)

– Binary (take two arguments, e.g., +-*/<>==)

– Ternary (take three arguments)

● Classifications:
– Arithmetic, logic, relational, assignment

Operator Context

● Operators are represented by symbols.
Sometimes, the symbols may mean
something completely different based on
context. For example:

int x = -1; // the '-' operator is negation

int x = 4 – 3; // the '-' operator is subtraction

Arithmetic Operators

● Addition is represented by '+':
– e.g., sum = x + y;

● Subtraction is represented by '-':
– e.g., diff = x – y;

● Multiplication is represented by '*':
– e.g., scale = x * y;

● Division is represented by '/':
– e.g., quotient = x / y;

● Modulus is represented by '%':
– e.g., remainder = x % y;

Relational Operators

● Assignment operator is '=': e.g., int sum = x;
● Equality operator is '==', e.g., is_equal =

(x==y);
● Less than: '<'
● Greater than: '>'
● Less than or equal to: '<='
● Greater than or equal to: '>='

Logical Operator

● AND: (x && y)
● OR: (x || y)
● NOT: (!x)

Bitwise Operators

● Like logical operators, but operate on the
individual bits of a variable, not the whole
logical value.

Int x = 1; int x = 1;

int y = 2; int y = 2;

int r = x || y; int r = x | y;

printf(“r is: %d”, r); printf(“r is: %d”, r);

 Output is: r is: 1 Output is: r is 3

Bitwise Operators (Cont'd)

● Bitwise OR: |
● Bitwise AND: &
● Bitwise XOR: ^
● One's complement: ~
● Left shift: <<
● Right shift: >>

Order of Operations

● PEMDAS (power, exponent, mul, div, add, sub)
● For everything else, use parenthesis to say

what you mean
● There are other rules. Learn them at your

leisure while using the above two. See table 2.1
in TCPL (page 53)

Type Conversions (TCPL, 2.7)

● Key question is of the form: when I {add, sub,
mul, div, mod...} and {int, float, long, …} {with,
from, by, …} a {float, double, long, int...} what
happens?

● Intermediate results are converted according to
a set of rules. Basic rule is that the results are
automatically “graduate” to the type of the
larger operant.

Casting

● “Casting” is the process of forcing a type
conversion

● Below, the integer value in “sum” is changed
into a double type before being used, as is the
result of the average score calculation:

 int n = 100;
 int sum = getsum();

 double d = (double) sum;

 double average = (double) sum / n;

Things We haven't Covered in this
Section

● Increment and decrement operators
● Assignment operators
● The ternary condition operator
● Short circuit boolean evaluation
● The nuances of type conversion
● Collections of data types and variables

(arrays, next lecture)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

