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Outline

● Expressions
● Data representation

– Variable name

– Variable type

● Primitive types
● Operations on variables



  

Readings

● TCPL Section 1.2:
– Variables and Arithmetic Expressions

● TCPL Chapter 2
– Types, Operators, and Expressions



  

Expressions

● A C program is a sequence of statements
● A C program is a collection of functions and 

the data that those functions operate on
● The building block of statements are 

expressions: combination of language 
keywords, function calls, operators, and 
operands that evaluate to a value



  

Review: What is a Program?

● A program is a sequence of instructions that 
operate on data

● A C program is a collection of variables 
functions that process the data held in those 
variables

● Computers process long strings of 0's and 1's
– Need a way to refer to portions of those strings 

as higher-level data objects



  

Variables



  

What exactly is a Variable?

● A variable is the concept of a piece of 
structured data that can be accessed (read or 
modified) via well-known, standard rules

● A variable is NOT JUST the data it contains!
● A variable also has:

– A name or identifier that provides a way to refer 
to it

– A type that defines its size (how much memory 
it uses)

– A location or memory address specifying where 
the data is stored



  

Example: Simple Integer Values

● Suppose we want to write a program for 
processing students' grades

● Need a variable to hold the total scores: 
– total_score: 

● Pattern:
– Variable name: 

valuevalue

3456



  

Example: Variable Declaration

● Declaring a variable is a standard action to let 
the rest of the program know about a piece of 
data that will be used

● The following program statement declares 
(that is, tells the computer to set aside a 
memory location for) an integer variable called 
'total_score':

    int total_score;

type               variable name



  

Declaring Variables

● Variables are usually declared at the beginning of the 
program or function they are used in

● Variable names can be any combination of letters, 
numbers, or underscores, but must start with a letter 
or underscore:

– Valid names: i, total_score, round2, _test

– Invalid names: $id, 2nd, total score
● Variable names should be descriptive; avoid names 

like 'ab', 'x', 'tmp', etc., unless for a good reason

● Make sure you don't try to name a variable after a 
reserved work (if, for, while, case, switch ...)



  

Subtle Points about Variable Names

● When you program, you see the variable name
● When the computer executes your program, it 

actually sees the variable memory address
● In both cases, the data is used behind the 

scenes



  

Types



  

Variable Types

● A type is a hint to the computer on how to handle the 
data contained in or referred to by the variable

– Usually this involves size of the storage allocated
● There are 4 basic primitive types in C:

– int (regular integers)
– char (1 character)
– float (single precision floating point number)
– double (double precision floating point number)



  

Type Modifiers

● Types can be augmented by additional 
information

● Some simple “type qualifiers” are listed below:
– short (applied to int)
– long (applied to int and double)
– signed

– unsigned (only non-negative values)
– const (specifies that the value cannot be 

changed)
● We usually drop the 'int' when specifying short or long



  

showsize demo



  

Output (sizes are in # of bytes)

mabdulla% ./size
     Data Type  Size Bytes          Min Value            Max Value
          char        1                  -128                  127
 unsigned char        1                     0                  255
         short        2                -32768                32767
           int        4           -2147483648           2147483647
          long        4           -2147483648           2147483647
     long long        8  -9223372036854775808  9223372036854775807
         float        4           1.17549e-38          3.40282e+38
        double        8          2.22507e-308         1.79769e+308
   long double       12          3.3621e-4932        1.18973e+4932
mabdulla% 



  

Consttest demo



  

Language Operators



  

Operators Overview

● You are familiar with many operators from 
basic math and logic:

– Addition (+), subtraction (-), multiplication (*), 
division (/)

– AND (&&), OR (||), NOT (!)

● Operators are basically common functions that 
take their input and produce some output

● Common enough to have their own symbols in 
a programming language (see above)



  

Operators (Cont'd)

● C has many operators
– Some you are familiar with (see previous page)

– Some not: mod, bitwise AND, OR, XOR, 
relational

● Operators are:
– Unary (take one argument, e.g.: !-)

– Binary (take two arguments, e.g., +-*/<>==)

– Ternary (take three arguments)

● Classifications:
– Arithmetic, logic, relational, assignment



  

Operator Context

● Operators are represented by symbols. 
Sometimes, the symbols may mean 
something completely different based on 
context. For example:

int x = -1;    // the '-' operator is negation

int x = 4 – 3; // the '-' operator is subtraction



  

Arithmetic Operators

● Addition is represented by '+':
– e.g., sum = x + y;

● Subtraction is represented by '-':
– e.g., diff = x – y;

● Multiplication is represented by '*':
– e.g., scale = x * y;

● Division is represented by '/':
– e.g., quotient = x / y;

● Modulus is represented by '%':
– e.g., remainder = x % y;



  

Relational Operators

● Assignment operator is '=': e.g., int sum = x;
● Equality operator is '==', e.g., is_equal = 

(x==y);
● Less than: '<'
● Greater than: '>'
● Less than or equal to: '<='
● Greater than or equal to: '>='



  

Logical Operator

● AND: (x && y)
● OR: (x || y)
● NOT: (!x)



  

Bitwise Operators

● Like logical operators, but operate on the 
individual bits of a variable, not the whole 
logical value.

Int x = 1;                 int x = 1;

int y = 2;                 int y = 2;

int r = x || y;            int r = x | y;

printf(“r is: %d”, r);     printf(“r is: %d”, r);

  Output is:  r is: 1        Output is: r is 3



  

Bitwise Operators (Cont'd)

● Bitwise OR: |
● Bitwise AND: &
● Bitwise XOR: ^
● One's complement: ~
● Left shift: <<
● Right shift: >>



  

Order of Operations

● PEMDAS (power, exponent, mul, div, add, sub)
● For everything else, use parenthesis to say 

what you mean
● There are other rules. Learn them at your 

leisure while using the above two. See table 2.1 
in TCPL (page 53)



  

Type Conversions (TCPL, 2.7)

● Key question is of the form: when I {add, sub, 
mul, div, mod...} and {int, float, long, …} {with, 
from, by, …} a {float, double, long, int...} what 
happens?

● Intermediate results are converted according to 
a set of rules. Basic rule is that the results are 
automatically “graduate” to the type of the 
larger operant.



  

Casting

● “Casting” is the process of forcing a type 
conversion

● Below, the integer value in “sum” is changed 
into a double type before being used, as is the 
result of the average score calculation:

   int n = 100;
  int sum = getsum();

  double d = (double) sum;

  double average = (double) sum / n;



  

Things We haven't Covered in this 
Section

● Increment and decrement operators
● Assignment operators
● The ternary condition operator
● Short circuit boolean evaluation
● The nuances of type conversion
● Collections of data types and variables 

(arrays, next lecture)
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