

ISA 563: Fundamentals of Systems
Programming

Pointers and Memory Management

Feb. 5, 2013

Overview: System Memory

● Memory stores many kinds of data
● Process sections
● Kernel/userspace
● Dynamic memory management

● Memory is managed jointly:
● The operating system's virtual memory system
● The C library memory management code

● Pointers allow explicit manipulation of variable
addresses

The Process Address Space

● A process represents a program in execution

● Processes have an address space: a way of
labeling all the different kind of memory, data,
and variables used by the program or the OS to
manage the program

Reasons to Use Pointers

● Copy-by-value is expensive for large data types

● Dynamic memory allocation

● Data structure link management

● A form of polymorphism via function pointers

What is a Pointer?

● Essentially an address

● Variables
● Name
● Address
● Type
● Value

● Function identifiers are essentially addresses

Example: Simple Pointer

int score = 100;
int *score_ptr;

score_ptr = &score;

fprintf(stdout,
 "addressof(score) = %p\n",
 score_ptr);

Properties of 'score'

int score = 100;
int *score_ptr = &score;

score
&score
sizeof(score)
score_ptr
&score_ptr
*score_ptr
sizeof(score_ptr)

Reading and Writing from/to Pointers

● ptr = value; // update the address held by ptr

● *ptr = value; // update the variable pointed to by ptr

● fprintf(stdout, “ptr = %p\n”, ptr);

● fprintf(stdout, “val = %d\n”, *ptr)

Pointers to Complex Data Types

struct node {
 double value;
 struct node *next;
};

struct node head;
head.value = 12.34;

struct node *node_ptr = &head;

// pointer access to struct fields
printf("\nhead.value = %g\n", head.value);
printf("node_ptr->value = %g\n", node_ptr->value);

Demo

varptr.c

Argument Passing

● Two ways to pass arguments to functions:
● Call by value

– Argument value is copied
– Changes to argument does not affect the original

● Call by reference
– A reference (pointer) to the variable is passed
– Passed variable can be changed through the

pointer
– The pointer itself, again, is passed by value

Demo

arg_passing.c

Argument Passing for Large Data Types

● Call by value:
● Large data type has to be copied for the call
● Large data type has to be copied back to caller

● Call by reference
● A reference to large data type is passed
● Data is modified through the reference (pointer)

Demo

large_args.c

Pointers and Arrays

● Strong relationship between pointers and
arrays in C

int a[10];

int *p = &a[0];

● Close correspondence between indexing and
pointer arithmetic

– a[i] == *(p+i)
– a[i] <=> *(a+i)
– a + i is the i-th element of a
– p = a; // can also be used instead of p=&a[0];

Pointers and Arrays (Cont'd)

● Although very close, there are some
differences:

● Array name is not variable, a pointer is.
– p = a; // legal
– p++; // legal
– a = p; // illegal
– a++; // illegal

● sizeof gives the size of all the elements for
array, and gives the size of the pointer for
pointers

– int a[10]; // sizeof(a) == 10 * sizeof(int)
– p = a; // sizeof(p) == sizeof(int *)

Demo

var_array.c

Demo

qsort.c

Memory Management APIs

malloc(3), calloc(3), realloc(3)

● malloc is a C library call that ask the C library
memory magement code to allocate or
apportion a section of user space memory for
your process

● calloc is similar but clears this memory for you

● realloc re-sizes already-allocated chunks. (Can
also do malloc, free, etc.)

Releasing Memory

● Use free(3)
● Avoid double-free error

● Set pointer to NULL immediately after a call to free

char *x = (char *) malloc(10);

if (x == NULL) {
 fprintf(stderr, “malloc failed\n”);
 exit(-1);
}

memset(x, 'A', 10);
free(x);
x = NULL;

memset(3)

● Write a value into a chunk of memory

● Arguments
● void *; -- pointer to a chunk

● int; -- char to write into the chunk

● size_t; -- number of bytes to write

memcpy(3) / memove(3)

● Copy one chunk to another

● Arguments:
● void *; -- pointer to source chunk

● void *; -- pointer to destination chunk

● size_t; -- number of bytes to transfer

● Use memove if you suspect src and dst
overlap. Supposedly, memcpy is faster, but src
and dst cannot overlap.

strcpy(3) / strncpy(c)

● Like memcpy, but treats '\0' as end of string
● CAUTION: use strncpy instead of strcpy

● Arguments (strncpy)
● char *dest; // pointer to destination

● char *src; // pointer to source

● size_t n; // number of chars to copy
at MOST. If src is longer than or equal
to what dest can hold, no automatic NULL
terminator. If less, remaining
destination NULL-filled.

Misc.

● bzero
● strncat, strncmp,
● strdup
● strerror
● strlen
● strstr
● strtok
● ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

