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Overview: System Memory

● Memory stores many kinds of data
● Process sections
● Kernel/userspace
● Dynamic memory management

● Memory is managed jointly:
● The operating system's virtual memory system
● The C library memory management code

● Pointers allow explicit manipulation of variable 
addresses



  

The Process Address Space

● A process represents a program in execution

● Processes have an address space: a way of 
labeling all the different kind of memory, data, 
and variables used by the program or the OS to 
manage the program



  

Reasons to Use Pointers

● Copy-by-value is expensive for large data types

● Dynamic memory allocation

● Data structure link management

● A form of polymorphism via function pointers



  

What is a Pointer?

● Essentially an address

● Variables
● Name
● Address
● Type
● Value

● Function identifiers are essentially addresses



  

Example: Simple Pointer

int score = 100;
int *score_ptr;

score_ptr = &score;

fprintf(stdout, 
        "addressof(score) = %p\n", 
        score_ptr);



  

Properties of 'score'

int score = 100;
int *score_ptr = &score;

score
&score
sizeof(score)
score_ptr
&score_ptr
*score_ptr
sizeof(score_ptr)



  

Reading and Writing from/to Pointers

● ptr = value;  // update the address held by ptr

● *ptr = value; // update the variable pointed to by ptr

● fprintf(stdout, “ptr = %p\n”, ptr);

● fprintf(stdout, “val = %d\n”, *ptr)



  

Pointers to Complex Data Types

struct node {
   double value;
   struct node *next;
};

struct node head;
head.value = 12.34;

struct node *node_ptr = &head;

// pointer access to struct fields 
printf("\nhead.value = %g\n", head.value);
printf("node_ptr->value = %g\n", node_ptr->value);



  

Demo

varptr.c



  

Argument Passing

● Two ways to pass arguments to functions:
● Call by value

– Argument value is copied
– Changes to argument does not affect the original

● Call by reference
– A reference (pointer) to the variable is passed
– Passed variable can be changed through the 

pointer
– The pointer itself, again, is passed by value



  

Demo

arg_passing.c



  

Argument Passing for Large Data Types

● Call by value:
● Large data type has to be copied for the call
● Large data type has to be copied back to caller

● Call by reference
● A reference to large data type is passed
● Data is modified through the reference (pointer)



  

Demo

large_args.c



  

Pointers and Arrays

● Strong relationship between pointers and 
arrays in C

int a[10];

int *p = &a[0];

● Close correspondence between indexing and 
pointer arithmetic

– a[i] == *(p+i)
– a[i] <=> *(a+i)
– a + i is the i-th element of a
– p = a; // can also be used instead of p=&a[0];



  

Pointers and Arrays (Cont'd)

● Although very close, there are some 
differences:

● Array name is not variable, a pointer is.
– p = a;  // legal
– p++;    // legal
– a = p;  // illegal
– a++;    // illegal

● sizeof gives the size of all the elements for 
array, and gives the size of the pointer for 
pointers

– int a[10]; // sizeof(a) == 10 * sizeof(int)
– p = a;      // sizeof(p) == sizeof(int *)



  

Demo

var_array.c



  

Demo

qsort.c



  

Memory Management APIs



  

malloc(3), calloc(3), realloc(3)

● malloc is a C library call that ask the C library 
memory magement code to allocate or 
apportion a section of user space memory for 
your process

● calloc is similar but clears this memory for you

● realloc re-sizes already-allocated chunks. (Can 
also do malloc, free, etc.)



  

Releasing Memory

● Use free(3)
● Avoid double-free error

● Set pointer to NULL immediately after a call to free

char *x = (char *) malloc(10);

if ( x == NULL ) {
   fprintf(stderr, “malloc failed\n”);
   exit(-1);
}

memset(x, 'A', 10);
free(x);
x = NULL;



  

memset(3)

● Write a value into a chunk of memory

● Arguments
● void *;  -- pointer to a chunk

● int;     -- char to write into the chunk

● size_t;  -- number of bytes to write



  

memcpy(3) / memove(3)

● Copy one chunk to another

● Arguments:
● void *;   -- pointer to source chunk

● void *;   -- pointer to destination chunk

● size_t;   -- number of bytes to transfer

● Use memove if you suspect src and dst 
overlap. Supposedly, memcpy is faster, but src 
and dst cannot overlap.



  

strcpy(3) / strncpy(c)

● Like memcpy, but treats '\0' as end of string
● CAUTION: use strncpy instead of strcpy

● Arguments (strncpy)
● char *dest;  // pointer to destination

● char *src;   // pointer to source

● size_t n;    // number of chars to copy   
at MOST. If src is longer than or equal 
to what dest can hold, no automatic NULL 
terminator. If less, remaining 
destination NULL-filled.



  

Misc.

● bzero
● strncat, strncmp,
● strdup
● strerror
● strlen
● strstr
● strtok
● ...
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