

ISA 563: Fundamentals of Systems
Programming

Signals

Feb. 19, 2013

Signals in Unix/Linux

● Signals are interrupts sent to processes from:
● the OS
● other processes
● hardware interrupts are sent to the OS by the

hardware

● Each signal has:
● an integer number to represent it
● a symbolic name

Signals in Unix/Linux (Cont'd)

● For a list of supported signals:
● $ kill -l

● Common signals:
● SIGINT – causes process to terminate
● SIGSTP – causes process to suspend
● SIGHUP – sends a hang-up signal (when the

controlling terminal closes)
– Use nohup command to make your process

immune to SIGHUP

Sending Signals

● From the keyboard:
● Ctrl-C:

– sends SIGINT.
– by default causes the process to terminate

● Ctrl-Z:
– sends SIGTSTP
– by default suspends the process

● Ctrl-\:
– sends SIGQUIT
– by default, causes the process to terminate

Sending Signals (cont'd)

● To send a signal from the command line:
● $ kill -<signal> <pid>

– kills by pid
● $ pkill -<signal> pattern

– kills by process name
● Both commands send SIGTERM by default

● To send signals from a program, use kill (2)
system call:

● int kill(pid_t pid, int sig);

Handling Signals

● Programs can register to catch signals using
the signal library call:

● Two signals cannot be caught:
● SIGKILL – kills the process
● SIGSTOP – always stops/pauses the process

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

Demo

sigcatch.c

Reentrant Functions

● A reentrant functions can be safely called again
before previous invocation completes

● Non-reentrant functions introduce uncertainty
when called from signal handlers

● Partial list of requirements for reentrancy:
● Should not hold static/global data
● Should not return a static/global non-const data
● Must not call other non-reentrant functions, such

as:
– malloc/free
– and many other standard IO library functions

alarm() / pause() functions

● alarm(int n):
● sends a SIGALRM signal to the calling process

in n seconds

● pause():
● puts the calling process to sleep until a signal

arrives

Demo

alarm.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

