

ISA 563: Fundamentals of Systems
Programming

Network Sockets

Feb. 19, 2013

Sockets

● A form of inter-process communication, like:
● Pipes
● FIFOs
● Shared memory

(We will discuss these and advanced socket
concepts later)

● Sockets allow IPC within the same host, as well
as on different hosts on the network

Socket Operations

Create an endpoint of communication:

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

 domain:
AF_INET IPv4 Internet domain
AF_INET6 IPv6 Internet domain
AF_UNIX UNIX domain

 type:
SOCK_DGRAM Datagram
SOCK_STREAM Connection
SOCK_RAW Raw socket

Close communication endpoint:

#include <sys/socket.h>

int shutdown (int sockfd, int how);

Socket Operatoins (cont'd)

● The socket() function returns a file descriptor
● The socket file descriptor can be treated as any

other file descriptor from open().
– close
– read
– write
– ...

● However, some functions cannot be used:
– lseek
– ftruncate
– ioctl depends on driver
– ...

Byte order

● Endianness due to CPU
architecture:

● Little-endian: Intel
● Big-endian: SPARC,

PowerPC

● Has to have a common
byte order for host-to-host
communication:

● Network byte order:
big-endian

Socket Operations: Client-side

● Create a socket:
● int sock = socket (AF_INET, SOCK_STREAM, 0) ;

● Connect to destination host and port:
● int val = connect (sock, ...) ;

● Data exchange:
● int r = read(sock, buf, sizeof(buf));

● int w = write(sock, buf, n);

● Close connection:
● close(sock);

Demo

www-client.c

Socket operations: Server-side

● Create a socket:
● int sock = socket (AF_INET, SOCK_STREAM, 0) ;

● Bind to port
● int val = bind (sock, ...) ;

● Listen (for connection oriented protocols):
● int val = listen(sock, QLEN);

● Wait for incoming connections:
● for (; ;) {

 conn = accept (sock, ...) ;

 // process requests using conn ...

}

Demo

echo-server.c

Handling Simultaneous Requests

● Different ways of achieving concurrency:
● fork

– Parent spawns a separate process
● Multiple process

● select
– Parent listens to multiple requests concurrently

● Single process

● threads
– Parent creates a thread to process each request

● Single process, multiple threads

Concurrency through forking

● Parent:
● Spawn of a copy of current process – fork()

● Child:
● Closes listening socket
● Processes incoming request
● Closes client socket
● Exits

Demo

concurrent-echo-server.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

