
THREADS &
SYNCHRONIZATION

ISA 563: Fundamentals of Systems Programming

Major Thread Environments

  UNIX: pthreads library

  Java: Thread class, Runnable interface

  Intel Thread Building Blocks Library
 http://www.threadingbuildingblocks.org/

documentation.php

Reasons to Use Threads

  Threads typically involve less overhead (memory & CPU
time) than a full process
 All threads “within” a process share the same memory as the

containing process and each other
  The overhead of “fork(2)” is avoided
 Context switching (time for OS to “give” the CPU to another

process) between multiple processes is avoided

  Threads can more naturally reflect independent but
related subtasks of an algorithm or process
  Potential for parallel execution & some speedup

High Level: What is a Thread?

  Threads represent an independent control flow
within a process

  How threads are implemented often depends on the
underlying thread library and operating system

  POSIX defines a standard thread API to manage
the lifecycle of a thread as well as synchronization
primitives

Logical Thread Content

  Threads typically contain the following state:
 A thread ID tid
 Scheduling data: policy & priority
 A set of registers (i.e., CPU state), including:

 A program counter (keep track of which instruction the
thread is executing)

 A stack (independent of the process’s stack and any other
threads within the process)

 Their own errno
 Their own signal mask set

Mapping Threads to Code

  Threads execute code independently; more than 1
thread can simultaneously execute the same
assembly instructions

  In other words, source code doesn’t necessarily
“belong” to any one thread
 The association of code to threads can change

dynamically during runtime

Major Issue: Synchronized Access

  Two or more threads, in executing the same
program statements simultaneously, might access
(i.e., read or write) the same data items
 Because thread execution ordering is unpredictable

(just like process scheduling), consistency is
unpredictable

 Program correctness is then questionable
 Thread APIs (pthreads, Java’s Thread object and

synchronization primitives) often provide ways to control
or synchronize access to shared data

Two Threads Sorting Same Data

for(gap=len/2;
 gap>0;
 gap/=2)

 for(i=gap;
 i<len;
 i++)

 for(j=i-gap;
 j>=0 &&
data[j]>data[+gap];
 j-=gap)

 swap(data[i], data[i+gap]);

for(gap=len/2;
 gap>0;
 gap/=2)

 for(i=gap;
 i<len;
 i++)

 for(j=i-gap;
 j>=0 &&
data[j]>data[+gap];
 j-=gap)

 swap(data[i], data[i+gap]);

Thead 1: shell_sort(data, len) Thread 2: shell_sort(data, len)

EIP of thread 2

EIP of thread 1

Solution? Locking and Synchronization

  The main idea is to provide atomic operations that
govern permission to enter a critical section
 Atomic operations are operations that execute in a

single machine clock cycle and cannot be interrupted at
any point in their execution

 A critical section is a section of code that manipulates
shared data items and must be made thread-safe in
order to ensure program correctness

 Specifics of how pthread library does it later…

Background: Atomic Operations

  A single line of C code corresponds to multiple
assembly (machine) instructions

  Even a single machine instruction may not execute in
1 clock cycle!

Mapping C to ASM Instructions

int main(int argc,
 char *argv[])
{
 int c = c + 1;
 return c;
}

 .text
.globl _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 leal -12(%ebp), %eax
 incl (%eax)
 movl -12(%ebp), %eax
 leave
 ret

C Code ASM Code

Mapping ASM to Clock Cycles

 .text
.globl _main
_main:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 leal -12(%ebp), %eax
 incl (%eax)
 movl -12(%ebp), %eax
 leave
 ret

LEA: Load Effective
Address: 2 cycles

INC: Increment by 1: 1 or
2 cycles

MOV: Copy 2nd operand
to 1st operand: cycles
vary

ASM Code Instruction Mneumonic

Highlights of Security Issues

  Privilege Separation between threads
  Information leaks & covert channels
  TOCTTOU (time-of-check-to-time-of-use) errors
  Memory leaks or double-free errors due to

mismanagement of reference counters
  DoS due to deadlock (internal mismanagement of

control paths leading to lock-acquiring mis-ordering)

Creating Threads

Tracking of Thread ID

Terminating & Joining Threads

Operating with Threads

Comparing Process & Thread Lifecycles

  fork(2)
  atexit(2)
  _exit(2)
  waitpid(2)
  getpid(2)

  pthread_create
  pthread_cleanup_push
  pthread_exit
  pthread_join
  pthread_self

Process Functions Thread Functions

Thread Creation

The ‘pthread_create(3)’ function is a pthread library
function that instructs the operating system to create
a thread in the current process’s context

Operating Systems can do this (i.e., map threads to
OS processes) in many ways
 Linux uses clone(), so 1 thread per process

Thread Creation & Running

  Threads do not follow the fork/exec pattern for
Unix processes

  Instead, when they are created, they are explicitly
assigned a section of code to begin executing via
the 3rd argument of pthread_create, a function
pointer

Thread Identification

  int pthread_equal(pthread_t tid1, pthread_t tid2);

  pthread_t pthread_self(void);

Why a function to compare pthread IDs?
 Because the pthread_t type can be a structure
 (not necessarily an integer like pid_t)

Terminating Threads

  Use pthread_exit: extinguish current thread
  Use pthread_join: extinguish target thread

(i.e., join with caller)
  Use pthread_cancel to request that another target

thread be extinguished
  Threads can register shutdown hooks via:

 Using pthread_cleanup_push()
 Using pthread_cleanup_pop()

Using pthread_exit

  Allows a thread to terminate itself
  Can pass back a pointer to a return value:

 pthread_exit((void*)RETURN_CODE);

  Return value can also be a structure
 But be careful that it is a valid pointer!
 For example, variables local to the thread stack may

be destroyed by the time the caller uses the thread’s
return structure value

  See Figure 11.4, page 362..364

Thread Shutdown Hooks

  Similar to atexit(3) process exit handlers
  Calls to pthread_cleanup_push and

pthread_cleanup_pop must match in the source
code

  These might be implemented as macros

  Figure 11.5 in APUE

Mutexes

Reader-writer locks (shared-exclusive locks)

Condition variables

Synchronization Mechanisms

Synchronization with Mutexes

  Mutual Exclusion: mutex
 A property whereby a resource is available to only 1

thread at a time. A mutex is a data item that represents
a ‘lock’ on a resource

  Threads must acquire the mutex before
manipulating the resource
 This is a convention only: the OS and hardware do not

enforce access on a data item --- the calling thread
must be cooperative and include the calls to the mutex
acquisition routines!

Caveats

  Threads can ignore mutexes and just access the
data

  Threads can race to acquire the mutex itself

  Ordering of mutex acquisition and release must be
the same across potentially many code paths;
deadlock can occur when an infrequently-exercised
code path (and thus series of mutex acquisitions) is
executed by multiple threads

Using pthread Mutex Variables

  Static Allocation:
pthread_mutex_t mlock = PTHREAD_MUTEX_INITIALIZER;

  Dynamic Allocation:
Use pthread_mutex_init after malloc of a pthread_mutex_t

pointer
Must use pthread_mutex_destroy before freeing mutex

pointer

  Lock / Unlock
pthread_mutex_lock(&mlock);
//critical section, update shared data
pthread_mutex_unlock(&mlock);

Can’t Afford to Block?

  Use pthread_mutex_trylock
 The calling thread can return without block from this

function
  It can then decide whether to try again, essentially

looping on the mutex, or continue on some other
processing path

Reader-Writer Locks

  A better name is “shared-exclusive”
 Three modes of access:

  “read”: multiple threads can read this resource
  “write”: a single thread locks resource to write to it
  “open”: unlocked

  Finer-grained than unlocked/locked of mutexes
 But has potential to starve writers if a high rate of

readers occurs; some implementations handle this
 Suitable for data structures that are read more often

than they are updated

Condition Variables

  Customize locking based on state of the shared
data

  When condition is satisfied, a signal is sent to
interested threads

Summary: Take-Home Message

  Threads provide a mechanism for allowing a single,
monolithic piece of source code to accomplish
multiple independent or dependent subtasks
concurrently

  Concurrency introduces challenges with regards to
consistency of critical data items
 Synchronization primitives provide a means to protect

critical sections of code, but the burden rests on the
programmer to use them correctly

Summary: Things to Consider

  Why use threads instead of fork?
  Do threads guarantee mutual exclusion?
  How would you find bugs (e.g., TOCTTOU) in multi-

threaded code?
  Do threads always require locking?
  Can a single thread cause the entire process to

terminate?

