THREADS &
SYNCHRONIZATION

Major Thread Environments
UNIX: pthreads library
Java: Thread class, Runnable interface

Intel Thread Building Blocks Library

Reasons to Use Threads

Threads typically involve less overhead (memory & CPU
time) than a full process

All threads “within” a process share the same memory as the
containing process and each other

The overhead of “fork(2)” is avoided

Context switching (time for OS to “give” the CPU to another
process) between multiple processes is avoided

Threads can more naturally reflect independent but
related subtasks of an algorithm or process

Potential for parallel execution & some speedup

High Level: What is a Thread?

Threads represent an independent control flow
within a process

How threads are implemented often depends on the
underlying thread library and operating system

POSIX defines a standard thread APl to manage

the lifecycle of a thread as well as synchronization
primitives

Logical Thread Content

Threads typically contain the following state:
A thread ID tid
Scheduling data: policy & priority
A set of registers (i.e., CPU state), including:

A program counter (keep track of which instruction the
thread is executing)

A stack (independent of the process’s stack and any other
threads within the process)

Their own errno

Their own signal mask set

Mapping Threads to Code

Threads execute code independently; more than 1
thread can simultaneously execute the same
assembly instructions

In other words, source code doesn’t necessarily
“belong” to any one thread

The association of code to threads can change
dynamically during runtime

Maijor Issue: Synchronized Access

Two or more threads, in executing the same
program statements simultaneously, might access
(i.e., read or write) the same data items

Because thread execution ordering is unpredictable

(just like process scheduling), consistency is
unpredictable

Program correctness is then questionable

Thread APIs (pthreads, Java’s Thread object and
synchronization primitives) often provide ways to control

or synchronize access to shared data

Two Threads Sorting Same Data
I

Thead 1: shell_sort(data, len) Thread 2: shell _sort(data, len)

for(gap=len/2; for(gap=len/2;
gap>0; gap>0;
gap/=2) gap/=2) ¢ - .
for(i=gap; for(i=gap;
i<len; i<len;
i++) i++)
for(j=i-gap; for(j=i-gap;
i>=0 && i>=0 &&

data[j]>datal+gap]; data[j]>data[+gap];
-=gap) EIP of thread 1 i-=gap)
swap(datali], Jatali+gap]); swap(data[i], data[i+gap]);

Solution? Locking and Synchronization

The main idea is to provide atomic operations that
govern permission to enter a critical section
Atomic operations are operations that execute in a

single machine clock cycle and cannot be interrupted at
any point in their execution

A critical section is a section of code that manipulates
shared data items and must be made thread-safe in
order to ensure program correctness

Specifics of how pthread library does it later...

Background: Atomic Operations

A single line of C code corresponds to multiple
assembly (machine) instructions

Even a single machine instruction may not execute in
1 clock cyclel!

Mapping C to ASM Instructions
I

Jext

int main(int argc,

.globl _main
char *argv[]) —main:
pushl %ebp
{ movl %esp, Yebp
subl $24, %esp

In‘l' C j— C +];\\qul -12(%ebp), %eqx

refurn c; \\incl (Yoeax)
! movl -12(%ebp), Yoeax

} leave
ret

Mapping ASM to Clock Cycles
I

text LEA: Load Effective

‘globl _main Address: 2 cycles

__main:
pushl %ebp
movl Y%esp, Y%ebp INC: Increment by 1: 1 or
subl $24, %esp 2 cycles

leal -12(%ebp), Yeax
incl (%eax)

movl -12(%ebp), %eax MOV: Copy 2"¢ operand
to 1% operand: cycles

vary

leave

ret

Highlights of Security Issues

Privilege Separation between threads
Information leaks & covert channels
TOCTTOU (time-of-check-to-time-of-use) errors

Memory leaks or double-free errors due to
mismanagement of reference counters

DoS due to deadlock (internal mismanagement of
control paths leading to lock-acquiring mis-ordering)

- Operating with Threads

Creating Threads

Tracking of Thread ID

Terminating & Joining Threads

Comparing Process & Thread Lifecycles

01 fork(2)

1 atexit(2)
1 _exit(2)

1 waitpid(2)
11 getpid(2)

O pt
o pt
o pt
o pt
o pt

nread_create
nread_cleanup_push
nread__exit

nread_join

hread_self

Thread Creation

The ‘pthread_create(3)’ function is a pthread library
function that instructs the operating system to create
a thread in the current process’s context

Operating Systems can do this (i.e., map threads to
OS processes) in many ways

Linux uses clone(), so 1 thread per process

Thread Creation & Running

Threads do not follow the fork/exec pattern for
Unix processes

Instead, when they are created, they are explicitly
assigned a section of code to begin executing via
the 3" argument of pthread_create, a function

pointer

Thread ldentification
int pthread_equal(pthread_t tid1, pthread_t tid2);
pthread_t pthread_self(void);

Why a function to compare pthread IDs?

Because the pthread_t type can be a structure

(not necessarily an integer like pid_t)

Terminating Threads

Use pthread_exit: extinguish current thread

Use pthread_join: extinguish target thread

(i.e., join with caller)

Use pthread_cancel to request that another target
thread be extinguished

Threads can register shutdown hooks via:

Using pthread_cleanup_push()
Using pthread_cleanup_pop()

Using pthread_exit

Allows a thread to terminate itself

Can pass back a pointer to a return value:
pthread_exit((void*)RETURN_CODE);

Return value can also be a structure
But be careful that it is a valid pointer!

For example, variables local to the thread stack may

be destroyed by the time the caller uses the thread’s
return structure value

See Figure 11.4, page 362..364

Thread Shutdown Hooks

Similar to atexit(3) process exit handlers

Calls to pthread_cleanup_push and
pthread_cleanup_pop must match in the source
code

These might be implemented as macros

Figure 11.5 in APUE

- Synchronization Mechanisms

Mutexes

Reader-writer locks (shared-exclusive locks)

Condition variables

Synchronization with Mutexes

Mutual Exclusion: mutex

A property whereby a resource is available to only 1
thread at a time. A mutex is a data item that represents
a ‘lock’ on a resource

Threads must acquire the mutex before
manipulating the resource
This is a convention only: the OS and hardware do not
enforce access on a data item --- the calling thread

must be cooperative and include the calls to the mutex
acquisition routines!

Caveats

Threads can ignore mutexes and just access the
data

Threads can race to acquire the mutex itself

Ordering of mutex acquisition and release must be
the same across potentially many code paths;
deadlock can occur when an infrequently-exercised
code path (and thus series of mutex acquisitions) is
executed by multiple threads

Using pthread Mutex Variables

Static Allocation:
pthread_mutex_t mlock = PTHREAD_MUTEX_INITIALIZER;
Dynamic Allocation:

Use pthread_mutex_init after malloc of a pthread_mutex_t
pointer

Must use pthread_mutex_destroy before freeing mutex
pointer

Lock / Unlock
pthread_mutex_lock(&mlock);

/ /critical section, update shared data

pthread_mutex_unlock(&mlock);

Can’t Afford to Block?

Use pthread_mutex_trylock

The calling thread can return without block from this
function

It can then decide whether to try again, essentially
looping on the mutex, or continue on some other
processing path

Reader-Writer Locks

A better name is “shared-exclusive”

Three modes of access:
“read”: multiple threads can read this resource
“write”: a single thread locks resource to write to it

“open’: unlocked

Finer-grained than unlocked /locked of mutexes

But has potential to starve writers if a high rate of
readers occurs; some implementations handle this

Suitable for data structures that are read more often
than they are updated

Condition Variables

Customize locking based on state of the shared
data

When condition is satisfied, a signal is sent to
interested threads

Summary: Take-Home Message

Threads provide a mechanism for allowing a single,
monolithic piece of source code to accomplish

multiple independent or dependent subtasks
concurrently

Concurrency introduces challenges with regards to
consistency of critical data items
Synchronization primitives provide a means to protect

critical sections of code, but the burden rests on the
programmer to use them correctly

Summary: Things to Consider

Why use threads instead of fork?

Do threads guarantee mutual exclusion?

How would you find bugs (e.g., TOCTTOU) in multi-
threaded code?

Do threads always require locking?

Can a single thread cause the entire process to
terminate?

