
THREADS & 
SYNCHRONIZATION 

ISA 563: Fundamentals of Systems Programming 



Major Thread Environments 

  UNIX: pthreads library 

  Java: Thread class, Runnable interface 

  Intel Thread Building Blocks Library 
 http://www.threadingbuildingblocks.org/

documentation.php 



Reasons to Use Threads 

  Threads typically involve less overhead (memory & CPU 
time) than a full process 
 All threads “within” a process share the same memory as the 

containing process and each other 
  The overhead of “fork(2)” is avoided 
 Context switching (time for OS to “give” the CPU to another 

process) between multiple processes is avoided 

  Threads can more naturally reflect independent but 
related subtasks of an algorithm or process 
  Potential for parallel execution & some speedup 



High Level: What is a Thread? 

  Threads represent an independent control flow 
within a process 

  How threads are implemented often depends on the 
underlying thread library and operating system 

  POSIX defines a standard thread API to manage 
the lifecycle of a thread as well as synchronization 
primitives 



Logical Thread Content 

  Threads typically contain the following state: 
 A thread ID tid 
 Scheduling data: policy & priority 
 A set of registers (i.e., CPU state), including: 

 A program counter (keep track of which instruction the 
thread is executing) 

 A stack (independent of the process’s stack and any other 
threads within the process) 

 Their own errno 
 Their own signal mask set 



Mapping Threads to Code 

  Threads execute code independently; more than 1 
thread can simultaneously execute the same 
assembly instructions 

  In other words, source code doesn’t necessarily 
“belong” to any one thread 
 The association of code to threads can change 

dynamically during runtime 



Major Issue: Synchronized Access 

  Two or more threads, in executing the same 
program statements simultaneously, might access 
(i.e., read or write) the same data items 
 Because thread execution ordering is unpredictable 

(just like process scheduling), consistency is 
unpredictable 

 Program correctness is then questionable 
 Thread APIs (pthreads, Java’s Thread object and 

synchronization primitives) often provide ways to control 
or synchronize access to shared data 



Two Threads Sorting Same Data 

for(gap=len/2; 
  gap>0; 
  gap/=2) 

  for(i=gap; 
   i<len; 
   i++) 

   for(j=i-gap; 
    j>=0 &&   
data[j]>data[+gap]; 
 j-=gap) 

  swap(data[i], data[i+gap]); 

for(gap=len/2; 
  gap>0; 
  gap/=2) 

  for(i=gap; 
    i<len;  
    i++) 

   for(j=i-gap; 
    j>=0 && 
data[j]>data[+gap]; 
    j-=gap) 

  swap(data[i], data[i+gap]); 

Thead 1: shell_sort(data, len) Thread 2: shell_sort(data, len) 

EIP of thread 2 

EIP of thread 1 



Solution? Locking and Synchronization 

  The main idea is to provide atomic operations that 
govern permission to enter a critical section 
 Atomic operations are operations that execute in a 

single machine clock cycle and cannot be interrupted at 
any point in their execution 

 A critical section is a section of code that manipulates 
shared data items and must be made thread-safe in 
order to ensure program correctness 

 Specifics of how pthread library does it later… 



Background: Atomic Operations 

  A single line of C code corresponds to multiple 
assembly (machine) instructions 

  Even a single machine instruction may not execute in 
1 clock cycle! 



Mapping C to ASM Instructions 

int main(int argc,  
            char *argv[]) 
{ 
  int c = c + 1; 
  return c; 
} 

 .text 
.globl _main 
_main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        subl    $24, %esp 
        leal    -12(%ebp), %eax 
        incl    (%eax) 
        movl    -12(%ebp), %eax 
        leave 
        ret 

C Code ASM Code 



Mapping ASM to Clock Cycles 

 .text 
.globl _main 
_main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        subl    $24, %esp 
        leal    -12(%ebp), %eax 
        incl    (%eax) 
        movl    -12(%ebp), %eax 
        leave 
        ret 

LEA: Load Effective 
Address: 2 cycles 

INC: Increment by 1: 1 or 
2 cycles 

MOV: Copy 2nd  operand 
to 1st operand: cycles 
vary 

ASM Code Instruction Mneumonic 



Highlights of Security Issues 

  Privilege Separation between threads 
  Information leaks & covert channels 
  TOCTTOU (time-of-check-to-time-of-use) errors 
  Memory leaks or double-free errors due to 

mismanagement of reference counters 
  DoS due to deadlock (internal mismanagement of 

control paths leading to lock-acquiring mis-ordering)  



Creating Threads 

Tracking of Thread ID 

Terminating & Joining Threads 

Operating with Threads 



Comparing Process & Thread Lifecycles 

  fork(2) 
  atexit(2) 
  _exit(2) 
  waitpid(2) 
  getpid(2) 

  pthread_create 
  pthread_cleanup_push 
  pthread_exit 
  pthread_join 
  pthread_self 

Process Functions Thread Functions 



Thread Creation 

The ‘pthread_create(3)’ function is a pthread library 
function that instructs the operating system to create 
a thread in the current process’s context 

Operating Systems can do this (i.e., map threads to 
OS processes) in many ways 
 Linux uses clone(), so 1 thread per process 



Thread Creation & Running 

  Threads do not follow the fork/exec pattern for 
Unix processes 

  Instead, when they are created, they are explicitly 
assigned a section of code to begin executing via 
the 3rd argument of pthread_create, a function 
pointer 



Thread Identification 

  int pthread_equal(pthread_t tid1, pthread_t tid2); 

  pthread_t pthread_self(void); 

Why a function to compare pthread IDs? 
 Because the pthread_t type can be a structure  
 (not necessarily an integer like pid_t) 



Terminating Threads 

  Use pthread_exit: extinguish current thread 
  Use pthread_join: extinguish target thread  

(i.e., join with caller) 
  Use pthread_cancel to request that another target 

thread be extinguished 
  Threads can register shutdown hooks via: 

 Using pthread_cleanup_push() 
 Using pthread_cleanup_pop()  



Using pthread_exit 

  Allows a thread to terminate itself 
  Can pass back a pointer to a return value: 

 pthread_exit((void*)RETURN_CODE); 

  Return value can also be a structure 
 But be careful that it is a valid pointer! 
 For example, variables local to the thread stack may 

be destroyed by the time the caller uses the thread’s 
return structure value 

  See Figure 11.4, page 362..364 



Thread Shutdown Hooks 

  Similar to atexit(3) process exit handlers 
  Calls to pthread_cleanup_push and 

pthread_cleanup_pop must match in the source 
code 

  These might be implemented as macros 

  Figure 11.5 in APUE 



Mutexes 

Reader-writer locks (shared-exclusive locks) 

Condition variables 

Synchronization Mechanisms 



Synchronization with Mutexes 

  Mutual Exclusion: mutex 
 A property whereby a resource is available to only 1 

thread at a time. A mutex is a data item that represents 
a ‘lock’ on a resource 

  Threads must acquire the mutex before 
manipulating the resource 
 This is a convention only: the OS and hardware do not 

enforce access on a data item --- the calling thread 
must be cooperative and include the calls to the mutex 
acquisition routines! 



Caveats 

  Threads can ignore mutexes and just access the 
data 

  Threads can race to acquire the mutex itself 

  Ordering of mutex acquisition and release must be 
the same across potentially many code paths; 
deadlock can occur when an infrequently-exercised 
code path (and thus series of mutex acquisitions) is 
executed by multiple threads 



Using pthread Mutex Variables 

  Static Allocation:  
pthread_mutex_t mlock = PTHREAD_MUTEX_INITIALIZER; 

  Dynamic Allocation: 
Use pthread_mutex_init after malloc of a pthread_mutex_t 

pointer 
Must use pthread_mutex_destroy before freeing mutex 

pointer 

  Lock / Unlock 
pthread_mutex_lock(&mlock); 
//critical section, update shared data 
pthread_mutex_unlock(&mlock); 



Can’t Afford to Block? 

  Use pthread_mutex_trylock 
 The calling thread can return without block from this 

function 
  It can then decide whether to try again, essentially 

looping on the mutex, or continue on some other 
processing path 



Reader-Writer Locks 

  A better name is “shared-exclusive” 
 Three modes of access: 

  “read”: multiple threads can read this resource 
  “write”: a single thread locks resource to write to it 
  “open”: unlocked 

  Finer-grained than unlocked/locked of mutexes 
 But has potential to starve writers if a high rate of 

readers occurs; some implementations handle this 
 Suitable for data structures that are read more often 

than they are updated 



Condition Variables 

  Customize locking based on state of the shared 
data 

  When condition is satisfied, a signal is sent to 
interested threads 



Summary: Take-Home Message 

  Threads provide a mechanism for allowing a single, 
monolithic piece of source code to accomplish 
multiple independent or dependent subtasks 
concurrently 

  Concurrency introduces challenges with regards to 
consistency of critical data items 
 Synchronization primitives provide a means to protect 

critical sections of code, but the burden rests on the 
programmer to use them correctly 



Summary: Things to Consider 

  Why use threads instead of fork? 
  Do threads guarantee mutual exclusion? 
  How would you find bugs (e.g., TOCTTOU) in multi-

threaded code? 
  Do threads always require locking? 
  Can a single thread cause the entire process to 

terminate? 


