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Abstract—Opportunistic networking, where node mobility is
utilized to achieve message delivery, has become an important
class of mobile ad hoc networking. A critical component of
performance analysis for opportunistic networking is a basic
understanding of contact and inter-contact times for commonly
studied mobility models. In this paper we give original results
nodal contact-times and analytically show that inter-contact times
of mobile nodes can be closely approximated as exponentially
distributed in Random Waypoint and Random Direction mobili ty
models. We then examine the effect ofHELLO intervals on
the observed inter-contact rate of nodes. Through extensive
simulation study, we show that our analytical results for mobility
characteristics are accurate.

I. I NTRODUCTION

Routing schemes for traditional mobile ad hoc networks
(MANETs) assume that nodes are well connected most of
the time. Generally, proactive schemes, where nodes try to
keep up to date routing information [24], or reactive schemes,
where nodes find routing paths on demand [17, 25], are used
to achieve message delivery. Both schemes assume that there
exists an end-to-end path from source to destination at the time
of message transfer. However, such assumptions do not hold
true when the mobile network is sparse and is intermittently
connected.

Routing methods for such sparse mobile networks use a
different paradigm for message delivery; these schemes utilize
node mobility by having nodes carry messages, waiting for
an opportunity to transfer messages to the destination or the
next relay rather than transmitting them over a path [15,
26, 29, 30, 35]. Opportunistic networking (ON), where node
mobility is utilized to achieve message delivery, has become
an important class of mobile ad hoc networking. Under such
opportunistic network routing protocols [31], nodes forward
messages only when they encounter the appropriate relay or
the destination node. Due to this dependence on mobility,
understanding mobility characteristics such as inter-contact
times of mobile nodes within each other or at a static location
plays an important role in the design and analysis of routing
algorithms under this paradigm.

In this paper we first give analytical results for node contact
times when two nodes come into contact with each other.

This is an important parameter in mobility-assisted networks
as contact times represent the duration of message communi-
cation opportunity upon a contact. We then analytically show
that nodal inter-contact times can be closely approximatedas
exponentially distributed under Random Waypoint (RWP) and
Random Direction (RD) mobility models. This is important
in understanding the performance of routing schemes for
opportunistic networks, as the inter-contact times of nodes are
the major component of message delay. Understanding the
rate and exponentiality characteristics of inter-contacttimes
under RWP and RD models is useful in two aspects. Firstly,
it allows the experimenter to use these models when it is
assumed that the underlying mobility has exponential inter-
contact times. Secondly, it enables the analysis and explanation
of performance measurements based on the exponentiality
characteristics when these mobility models are used in exper-
iments. For inter-contact times, we extend our results further
by considering the effect of beaconing (HELLO) messages
on the observed inter-contact rate. This result is important in
understanding the trade-offs when tuning beaconing intervals,
since largerHELLO intervals decrease energy usage, while
increasing inter-contact times, contributing to larger message
delays. Through extensive simulation study, we show that our
analytical results for mobility characteristics are accurate.

The rest of the paper is organized as follows. Section II goes
over the background and related work. Section III discusses
the stochastic mobility properties of the Random Waypoint
and Random Direction mobility models. Section V presents
experimental results. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Mobility models play an important role in the simulation
study of mobile networks. Two common mobility models are
the Random Waypoint (RWP) and Random Direction (RD).
Other mobility models are proposed by different groups [1, 6,
9, 10, 31]. Also, issues such as non-uniform node distribution
and speed decay have been addressed for the RWP model [3,
33]. However, RWP and RD mobility models are currently
widely used in network simulations and are the focus of



our study. Before we continue our discussion we go over
background, assumptions, and related work.

A. Background

In this study, we focus on two epoch-based mobility models:
Random Waypoint (RWP) and Random Direction (RD). For
practical purposes, we consider a two-dimensional system
spaceA of size A as a square area of widtha or a circular
region with radiusa. The movement of a node from a starting
position to its next destination is denoted as amovement
epoch, or anepoch in short. In epoch-based mobility schemes,
a node starts from pointPi ∈ A, and moves to another
point Pi+1 ∈ A according to the movement semantics of
the mobility model to complete the epoch. It then pauses
for a random amount of timeTp, randomly chosen with the
expected value of̄Tpause. This process repeats in this manner.
We useL̄ to denote average epoch distance, and useT̄ to
denote average epoch duration. The movement speedv is
uniformly and randomly chosen from[vmin, vmax], where
0 < vmin < vmax < ∞.

Formally, Random Waypoint can be specified as a stochastic
process

{Pi, Tp,i, Vi}i∈N = {(P1, Tp,1, V1), (P2, Tp,2, V2), · · · }

where Tp,i is the pause time at waypointPi, and Vi is the
velocity of node during theith epoch.Pi is assumed to be
independently and identically distributed (i.i.d) at random,
uniformly chosen fromA. Due to ergodicity properties of
movement and distribution under RWP [2], the average epoch
length for a convex areaA is given by

L̄ =
1

A2

∫

A

∫

A

‖P1 − P2‖dP1dP2 (1)

where‖P1 − P2‖ is the distance between waypointsP1 and
P2. That is, the analysis of stochastic properties under RWP
model can be simplified by only considering two independent
points randomly chosen from system area. For a square area
of sizea×a, we haveL̄ = 0.5214a, and for a circle of radius
a, we haveL̄ = 0.9054a [2].

Similarly, the Random Direction can be specified as a
stochastic process

{Ti, Tp,i, Vi}i∈N = {(T1, Tp,1, V1), (T2, Tp,2, V2), · · · }

where Ti is the duration of ith epoch, and is randomly
generated from an exponential distribution with an average
of T̄ = L̄/v̄. As in RWP,Tp,i is the pause time before theith

epoch starts.Vi denotes the velocity at the start of epochi,
and may change its direction if the border is reached before
Ti elapses.

Although movement direction may change during an epoch,
as in the case of Random Direction with reflection, we assume
the speed remains the same in an epoch. The average node
speed,̄v, is defined as

v̄ =
L̄

T̄

The expected aggregate node speed,v∗, when considering
pause times is given as

v∗ =
L̄

T̄ + T̄pause

(2)

Nodes are assumed to have circular radio range with radius
r. For the case of sparse mobile networks, we assume that
r ≪ a and thatr ≪ L̄.

B. Related Work

The stochastic properties of the Random Waypoint mobility
model have been extensively studied [2, 3, 20, 23]. Similar
studies are also available for the Random Direction model
[4, 5, 22]. Most of these studies focus on node distributions,
epoch lengths, and movement directions, and are a foundation
for further analysis of node movement characteristics under
the mobility models. Analytical results for transient behavior
of nodes under RWP and RD are presented in [12]. Modeling
of steady-state and transient behaviors of user mobility based
on real world traces are discussed in [21]. Results for the
expectedhitting time andmeeting time in RWP and RD models
are given in [31] in the context of mobility-assisted routing.
Similar results are presented in [13] for the analysis of message
delay under sparse networks.

In our study, we focus on the rate and the distribution
of inter-contact times under RWP and RD models. This is
because the inter-contact time is the main contributing factor
to message delays as the effects of the contact time and
the message transfer time are comparatively small under
typical opportunistic network conditions. To analyze inter-
contact times we first view node activities as interleaving
encounters and departures—nodes spend some time within
each other’s radio range after a contact, and spend some
more time before they encounter each other again. We show
analytically that inter-contact times in RWP and RD models
can be closely approximated by an exponential distribution
and provide analytical and experimental results. Further,since
message transfers only occur when nodes meet each other, we
also discuss the contact time of nodes when they come into
contact. We also discuss the effects ofhello intervals on the
observed inter-contact rate.

The near-exponential distribution of inter-contact timesin
RWP and RD models surfaces in different experimental stud-
ies [13, 32]. In [13], authors analyze the message delay in
epidemic routing under the assumption that the inter-contact
times are exponentially distributed, and experimentally verify
the validity of the assumption under Random Waypoint and
Random Direction models. Based on this exponentiality as-
sumption, further modeling of Epidemic routing performance
is provided in [34]. Many studies also use Markovian model
for node inter-contact times with or without assuming RWP
or RD mobility model [27–29,32]. Unlike this earlier work,
we show that the inter-contact times can be approximated as
exponentially distributed. This helps to simplify the analysis
of routing schemes under RWP or RD models, and to relate
experimental results to analytical models. It also enablesus to



use these two mobility models for simulation when the inter-
contact times are known to be exponentially distributed.

Understanding the movement characteristics of common
mobility models and performance analysis are important in
the understanding and evaluation of MANET routing schemes.
We believe that our analysis of mobility characteristics and
performance metrics will be helpful in the analysis and design
of various opportunistic routing schemes for intermittently
connected mobile networks.

III. STOCHASTIC PROPERTIES OFMOBILITY MODELS

In this section, we study the statistical properties of node
encounters, focusing on node inter-contact times and contact
times using two commonly used mobility models: Random
Waypoint (RWP) and Random Direction (RD). Within node
inter-contact times, we look at inter-contact times between two
mobile nodes and inter-contact times of a mobile to a static
location.

From the viewpoint of a mobility model, node movements
consist of interleaving periods of movements and pauses. From
an application’s point of view, nodeN sees the movements
of another nodeM in terms of the time thatM spends in
its radio range, which we call ascontact time, and theinter-
contact time between two contacts. The contact time is defined
as the time elapsed from a node’s entry into another node’s
radio range until its consequent exit. The inter-contact time is
defined as the time passed since previous exit until next entry
into the radio range.

In this section, we first provide analytical results for node
contact times. We then analytically show that nodal inter-
contact times under RWP and RD mobility models can be
closely approximated as exponentially distributed under basic
assumptions. Further, we provide analytical results for relative
speeds of mobile nodes for the two mobility models, which are
necessary to calculate the inter-contact rates and are helpful in
explaining the differences in inter-contact rates of RWP and
RD mobility models.

A. Contact Times

As discussed above, the contact time is one of the two
important aspects of node mobility from the viewpoint of an
application. It provides an estimate of the expected time two
nodes will have for message exchange when they come into
contact.

In terms of movement behavior upon entering the radio
range of another node, there are no fundamental differences
between RWP and RD mobility models, especially when
r ≪ L̄. Hence, we do not discriminate between the two models
in our analysis of contact times.

Figure 1 depicts the scenario where nodeM is moving into
the radio range of nodeN at velocity−→v . We take the position,
PN of nodeN as the center of the coordinate system and the
direction ofM ’s velocity−→v to be the direction ofx-axis. Here
we assume that the PDF of a mobile node crossing they-axis at
a pointy is uniform in the range(−r, r). This is reasonable as
we assume thatr ≪ a. This assumption is different from [16]
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Fig. 1. Calculation of Contact Time

where the direction fromM to N is taken as the direction
of x-axis and the movement angle measured fromx-axis is
assumed to be uniform. We note that our result for the contact
time is consequently different from the result given in [16].
We empirically validate our results in Section V.

Theorem 1: Let r be the radius of radio range and leta be
the radius of system area. Under the assumption thatr ≪ a,
the expected contact time,̄TC , of a static node and a mobile
node is given as:

T̄C =
πr

2v∗

where v∗ is the expected aggregate speed given in Equa-
tion (2).

Proof: We first examine the case where there is no epoch
change whileM covers the distance,l0, from E to X . We
then extend our result by considering the case where an epoch
change occurs beforeM exits the radio range ofN .

To calculatel0, we introduce two auxiliary segmentsNX
and NE as shown in the figure. We usey to denote the
intersection ofEX andy-axis. It is easy to see that

l0 = ‖EX‖ = 2r cos θ = 2
√

r2 − y2

Since the intersection pointy can occur anywhere in the range
of (−r, r), the expected distance covered within the circle,l̄0,
can be given as follows:

l̄0 =
1

2r

∫ r

−r

2
√

r2 − y2dy =
πr

2
(3)

The result above is obtained under the assumption that−→v
does not change within the radio range. Givenr is small
compared toL̄, we can ignore the probability of two or
more direction changes, and only consider the case where one
direction change may occur, the probability for which,Pc, can
be estimated as

Pc =
l̄0
L̄



The expected distance covered in the circle before the change
occurs isl̄0/2. We have calculated that the expected distance
covered before node exits the radio circle from the pause
location is approximately0.9r (see Appendix). Therefore, the
expected distance thatM covers before exiting the circle is:

l̄ = l̄0(1 − Pc) + Pc(
l̄0
2

+ 0.9r)

= l̄0 +
Pc

2π
(3.6 − π)l̄0

≈ l̄0

The approximation holds true asPc = l̄0/L̄ is small compared
to 1, andPc(3.6 − π)/2π ≈ 0.07Pc ≪ 1.

Since the average pause between two epochs isT̄pause, the
expected time spent in the radio range,T̄C , can be expressed
as follows:

T̄C =
l̄

v̄
+ PcT̄pause

≈ l̄0
v̄

+
l̄0
L̄

T̄pause

= l̄0(
T̄ + T̄pause

L̄
)

=
πr

2v∗
(4)

A simplification of the expression is made above by applying
the definition of the aggregate speedv∗ as given in Equation
(2).

When both nodes are mobile, relative speedṽ, which we
discuss below, is used instead ofv̄ in the calculation ofT̄C .

B. Inter-contact Times in Random Waypoint Model

We first show that after reaching stationary distribution, the
contact times of mobile nodes at a static location can be closely
approximated as exponentially distributed, and show that result
also holds true for inter-contact times under our assumptions
regarding the network. We use the expected speed,v̄, in our
calculations, and the aggregate speed,v∗ can be used if pause
times need to be considered.

1) Inter-contact Times of a Mobile and a Static Node: Due
to i.i.d. property of node movements in RWP, we only have
to consider the mobility of a single node. Given that the PDF
f(x, y) denotes the probability density of node distribution
of mobile nodeM at position(x, y), the probability,p, of
M going through the radio range ofN in an epoch is
approximated as follows [14, 31]:

p = 2rL̄f(x, y) (5)

This is becauseM can cross anywhere in the segment
(−r, r) of length2r in they-axis, as shown in Figure 1, during
an epoch. Heref(x, y) is used to approximate the PDF of node
distribution within the radio range, which is reasonable under
the assumption thatr ≪ a. Although two consecutive epochs
are not independent due to the overlap of end-points, we can
view epochs in RWP model as independent as shown in [2]

due to ergodicity, and the inter-contact times can be described
using a geometric distribution in terms of epochs:

P (Nhit > n) = (1 − p)n =
(

1 − 2rL̄f(x, y)
)n

(6)

HereNhit denotes the epoch thatM comes into contact with
N , and P (Nhit > n) denotes probability thatM has not
encounteredN till after n epochs. This result is given in [31]
as hitting time of a mobile node at a random location at a
static position at(x, y), assuming thatM starts its movement
at a random location at time 0.

Since the node movement in one epoch continues in the
same direction till the end of an epoch, and we cannot extend
the results above for arbitrarily small time intervals as the
independence assumption does not hold within an epoch,
contrary to the argument in [14]. Further, for inter-contact
time we have to consider that once two nodes come into
contact, the position of the mobile node can no longer be
considered random as the next inter-contact time is calculated
from the time when the mobile node exits the radio range.
Below we discuss factors affecting nodal inter-contact times
after a contact, and show that hitting times and inter-contact
times above1.5T̄ can be closely approximated as exponential
using analytical results.

As discussed above, mobile nodeM spends some time with
the radio range of nodeN and eventually moves out. The
expected distance betweenN and M when M pauses and
chooses a new speed and direction can be approximated as
L̄/2. We know from Equation (1) that̄L denotes the expected
distance between two endpoints in the stationary distribution
of RWP. On one hand, this meansM starts a new epoch at a
closer location than the average case in stationary distribution.
Intuitively, it can be expected that this decreases the inter-
contact time. Further, as given in [2] the mobile node is more
likely to choose a direction in the opposite direction, which
also increases the likelihood of crossing the radio range of
the static node. On the other hand, the expected contact-time
increases sinceM is expected to continue its movement away
from N for a distancēL/2, for a total round-trip distance of̄L,
or a round-trip time ofT̄ . In other words, inter-contact times
smaller thanT̄ have lower likelihood of happening.

If the nodeM chooses a random waypoint such that it does
not cross the radio range of the static node, it will be at a
totally independent position after coverinḡL in an expected
time of T̄ . Under this condition, the expected time to reach
the new waypoint is1.5T̄ . Although we can see from the
analysis above that the inter-contact times cannot be modeled
as exponential, when the average epoch time,T̄ , is much
smaller than the expected inter-contact time,T̄ic, the geometric
distribution given in Equation (6) can be closely approximated
as exponential. For this, we give the following lemma:

Lemma 1: Let r be the radio range radius, leta be the
radius of the system area, letT̄ be the expected epoch duration,
and letT̄ic be the expected hitting time. Assumingr ≪ a, then
T̄ /T̄ic = p ≪ 1 holds true.

Proof:
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Since the hitting time can be described as geometric distri-
bution as described in Equation (6), the expected hitting time
is given asT̄ic = T̄ /p. Without loss generality we assume that
f(x, y) = 1/a2 to obtain the following:

T̄

T̄ic

= p = 2rL̄f(x, y) =
2L̄r

a2
≈ r

a

As r ≪ a, the assumption that̄T/T̄ic = p ≪ 1 holds.
Similar result can be obtained for circular regions.

Although the geometric distribution is used to describe the
node inter-contact times in terms of the number of epochs,
nodes can come into contact at any time during an epoch. We
useF (t) for CDF of inter-contact times in continuous time
domain. With the theorem given below we quantify the bounds
of exponential approximation of hitting times and inter-contact
times using an exponential distribution with a rate ofλ =
− ln(1− p)/T̄ , where we useFx(t) to denote the CDF of the
approximating exponential distribution.

Theorem 2: Let r be the radius of radio range, leta be the
radius of system area, let̄T be the expected epoch duration, let
v̄ be the expected speed of a mobile node, and letf(x, y) be
the PDF of node distribution at position(x, y). Further, define
Is as interval[1.5T̄ ,∞). Assumingr ≪ a, the distribution
inter-contact timest ∈ Is can be closely approximated as
exponentially distributed satisfying the following condition

sup
t∈[1.5T̄ ,∞)

|Fx(t) − F (t)| ≤ p

wherep is given by Equation (5), and satisfies the condition
p ≪ 1 as given in Lemma 1.

Proof:
As discussed above, hitting times and inter-contact times

larger than1.5T̄ can be described using a geometric distri-
bution as given in Equation (6). We introduce two geometric
distributionsFu

g (i) = 1− (1−p)i+1 andF l
g(i) = 1− (1−p)i,

for upper and lower bounds of the CDF,F (t), respectively.
Since any CDF is monotically increasing, regardless of the
shape ofF (t) between point(i, 1 − (1 − p)i) and point
(i + 1, 1 − (1 − p)i+1) for i = 0, 1, . . . , the CDF is totally
contained within the rectangular region bounded by the CDFs
of two bounding geometric distributions:Fu

g (i) and F l
g(i),

as shown in Figure 2. Further, we boundFu
g (i) and F l

g(i)

using two exponential CDFs,Fu
x (t) = 1 − e−λ(t+T̄ ) and

F l
x(t) = 1− e−λ(t−T̄ ), respectively. Sinceλ = − ln(1− p)/T̄

the following holds true fori = 0, 1, . . . :

Fu
x (i × T̄ ) = 1 − e−λ(i+1)T̄ = 1 − (1 − p)i+1 = Fu

g (i)

Considering that the result above and the fact thatFu
g (i) is

constant in time interval[iT̄ , (i + 1)T̄ ), andFu
x (t) is strictly

monotically increasing during the same interval, we can see
thatFu

g (i) is upper bounded byFu
x (t) for t > 0. Using similar

analysis we can show thatF l
g(i) is lower bounded byF l

x(t)
for t > T̄ , as shown in Figure 2.

As given above, the CDF of the inter-contact times,F (t), is
upper- and lower-bounded byFu

x (t) andF l
x(t), respectively. It

is not hard derive thatFu(t)−F (t) is monotically decreasing:

d(Fu(t) − F (t))

dt
= λ(e−λ(t+T̄ ) − e−λt) < 0, 0 ≤ t

and has the largest value of(Fu(t)−F (t))|t=0 = 1− e−λT̄ −
(1 − e0) = p at t = 0. It can be similarly obtained for the
F (t)− Fl(t) is monotically decreasing fort > T̄ and has the
largest value at(F (t)−Fl(t))|t=T̄ = 1−e−λT̄ − (1−e0) = p
at time t = T̄ . This completes the required proof.

The implications of the theorem above are that inter-contact
times can be closely approximated as exponential except fora
small interval[0, 1.5T̄ ], asT̄ ≪ T̄ic. Using the same reasoning
above, hitting times can be also shown to follow the same
bounds. We can also see that sincep ≪ 1, the bounds also
tight. Further, the geometric distributions used as upper-and
lower-bounds above corresponds to the assumptions that node
contacts only occur at the beginning of an epoch or at the end
of an epoch, respectively. Since the probability of coming into
contact with the static node during an epoch can be considered
uniformly distributed within the epoch without any specific
assumptions, the CDF of inter-contact times can be expected
to be much closer to that of the approximating exponential
distribution, and the the upper and lower bounds can also be
expected to much tighter than the results given above.

2) Inter-contact Times of Two Mobile Nodes:
Theorem 3: Let r be the radius of radio range, leta be the

radius of system area, let̄T be the expected epoch duration,
let v̄ be the expected speed of a mobile node and letf(x, y) be
the PDF of node distribution at position(x, y). Further, define
Is as interval[1.5T̄ ,∞). Assumingr ≪ a, the distribution
of inter-contact times of two mobile nodes int ∈ Is can be
closely approximated as exponentially distributed satisfying



the following condition:

sup
t∈[1.5T̄ ,∞)

|Fx(t) − F (t)| ≤ p

where p = 2rρL̄/A, in which ρ = A
∫∫

f2(x, y)dxdy.
Further,F (t) is the CDF of inter-contact times, andFx(t) is
the CDF of approximating exponential distribution with rate
λ = − ln(1 − p)/T̄ .

Proof: The proof for the inter-contact rate for two mobile
nodes are mostly similar to Theorem 2 above, except for the
calculation of inter-contact rate is are discussed below, and is
thus omitted.

The inter-contact time of two mobile nodes is given as the
expectedmeeting time in [31]. Under the simplifying condition
that Tpause = 0, the expected meeting time given in [31] can
be written as:

EMrwp =
A

2rv̂rwpv̄
=

A

2rṽ

wherev̂rwp is the normalized relative speed for RWP, which is
calculated to be 1.754 in [31] when the speed of both mobile
nodes is set tōv, compared tôvrd = 1.27 for the Random
Direction model. We can get the expected meeting rate,λrwp,
according to the expression above asλrwp = 2ṽr/A. The
differences in thev̂rwp and v̂rd is attributed to the non-
uniformity of movement direction at the beginning of an epoch
under the Random Waypoint model, which has a strong bias
towards the center [2, 31].

We argue that, due to circular symmetry in a circular area,
the non-uniformity of movement direction at the beginning of
an epoch under Random Waypoint model does not contribute
to the differences between the normalized speeds of Random
Waypoint and Random Direction models. The differences of
between the differences in the inter-contact rates of the two
models is due to the factorρ = A

∫∫

f2(x, y)dxdy, which
is defined by the system areaA, and the differences in the
distribution of nodal speed, even with the same pair ofvmin

andvmax for both models. To show this, we first prove that the
relative movement angle of the two mobile nodes is uniformly
distributed under RWP in a circular region. We then calculate
the ρ values for circular and square regions. We also provide
expressions for the calculation of relative movement speeds
for both Random Waypoint and Random Direction models.

Theorem 4: Let A andB be two mobile nodes in a circular
region moving according to the Random Waypoint mobility
model, then the relative movement angle,θvAB

, between their
velocities is uniformly distributed. That is:

fΘVAB
(θvAB

) =
1

2π
, θvAB

∈ [0, 2π)

wherefΘVAB
(θvAB

) is the PDF of relative movement angle
distribution.

Proof: Let us assume that nodeA is at an arbitrary
locations inside the circular region of radiusa. For simplicity

O rA A

vA

θvA

vA

B

rB

vB

θvB

θB

Fig. 3. Uniformity of Relative Movement Angle Distributionof Mobile
Nodes

let us take the center of the circular region,O, as the origin of
the polar coordinate system, and take the direction fromO to
the location of nodeA as the direction of polar axis, as shown
Figure 3. NodeA’s movement angle,θvA

is calculated from
line OA in counter-clockwise direction. Similarly, assuming
nodeB’s coordinate is(rB , θB), nodeB’s movement angle,
θvB

is calculated from lineOB in counter-clockwise direction.
It is easy to see from Figure 3 that the following relationship
holds:

θvAB
= θB + θvB

− θvA
(7)

whereθvAB
is the relative angle fromvA to vB .

Let us further assume thatfR(r) is the PDF of node
distribution, denoting the probability density that a nodeis
found at a distancer from O. Also, let fΘV

(θv|P = p)
denote the PDF of movement direction of a node at locationp,
where the movement direction is calculated from the lineOp.
Due to rotational symmetry of circular region, we can make
the following statements without any calculation. First, given
that a node is located atr distance away from the pole, the
angle coordinate of nodeB from the polar axis is uniformly
distributed, that is:

fΘB
(θB |r) =

1

2π
, θ ∈ [0, 2π)

Second, the movement angle distribution of a node at a
positionp = (r, θ) is only dependent onr. That is,

fΘV
(θv|P = p) = fΘV

(θv|rp = r)

GivenrA, θvA
, rB, andθvB

, the conditional PDF of relative
movement angle distribution,fΘVAB

(θvAB
), is given as

fΘVAB
(θvAB

|rA, θvA
, rB , θvB

) = fθB
(θB + θvB

− θvA
)

=
1

2π
(8)

That is, given a pair of values forθvA
andθvB

, for any value
of θvAB

there exists a value from uniformly distributedθB that
satisfies the relationship given by Equation (7).



The unconditional PDF,fΘVAB
(θvAB

), is given as

fΘVAB
(θvAB

) =

Z a

0

Z

2π

0

Z a

0

Z

2π

0

fR(rA)fΘV
(θvA

|rA)fR(rB) ×

fΘV
(θvB

|rB)fΘVAB
(θvAB

|rA, θvA
, rB, θvB

)dθvB
drBdθvA

drA

=
1

2π

Z a

0

Z

2π

0

Z a

0

Z

2π

0

fR(rA)fΘV
(θvA

|rA) ×

fR(rB)fΘV
(θvB

|rB)dθvB
drBdθvA

drA

=
1

2π
(9)

The final result is obtained as each integral integrates a PDF
and evaluates to 1. This gives the required proof.

We can see that independent of the PDF of node distribution,
fR(r), and the PDF of movement angle distribution,fΘV

(θv),
the uniformity of relative movement angles holds in a circular
region. That is, although Bettstetter et al. [2] shows that
movement direction of a single mobile node has a strong bias
towards the center, the relative movement direction of two
mobile nodes is uniform in a circular area due to rotational
symmetry. For simplicity, we also assume that the relative
movement angle distribution is approximately uniform in a
square region.

Now let us discuss the inter-contact time among mobile
nodes. Letf(x, y) denote the stationary node distribution
PDF at location(x, y), then the PDF of node distribution for
nodeN at location(x, y) is given byf(x, y). And, following
Equation (5), the probability,p(x, y), of nodeM meeting node
N at X(x, y) in one epoch is given by

p(x, y) = 2rL̄f2(x, y)

The unconditional probability,PU , for areaA is given by

PU =

∫∫

2rL̄f2(x, y)dxdy = λT̄

whereλ = 2ρrṽ/A, in which ρ = A
∫∫

f2(x, y)dxdy and ṽ
is the relative speed ofM andN ,

Following similar arguments for the static location case, the
approximated CDF of inter-contact times is approximated as
follows:

F (t) = 1 − e−λt (10)

whereλ = 2ρrṽ/A.
Similar analytical results are presented in [14]. However,the

exponentiality of inter-contact times is explained by assuming
that the node movement for an arbitrarily small interval is
independent of previous movement. This assumption is not
valid in epoch-based movement models, as the node must
complete an epoch before it can choose a new movement
direction and movement speed.

3) Calculation of ρ for Random Waypoint Model: In RWP
model, the value ofρ depends on the shape ofA, and can be
calculated analytically or numerically whenf(x, y) is known.
For the square area, approximate values ofρ for be calculated
as 1.3683 [13]1.

1This value is calculated in [13] based on analytical resultsfrom [20].
However, note that numerically calculatingρ according to analytical results
from [3] gives 1.3805.

θ

v1

v2

v̆

Fig. 4. Relative Speed of Two Mobile Nodes

To calculate theρ value of the circular region, we consider
a unit disk of sizeπ. From the polynomial approximations of
the PDF of node distribution given by [20] for unit disk, we
use the following:

P (r) =
3(1 − r2)(189 − 44r2 − 18r4)

257π

With this function, we calculate the value ofρ as follows:

ρ = A

∫∫

A

f2(x, y)dxdy

≈ π

∫ 2π

0

∫ 1

0

P 2(r)rdrdφ

= 18π2

∫ 1

0

r(1 − r2)2(189 − 44r2 − 18r4)2

(257π)2
dr

=
3272289

2311715
≈ 1.4155

4) Expected Relative Speed under Random Waypoint
Model: The expected speed of a single node under RWP
model is given as below [33]:

v̄ =
L̄

T̄
=

vmax − vmin

ln(vmax/vmin)

This is due to the fact that the time a node spends at speedv
is inversely proportional tov in RWP model. The PDF,fV (v),
of a node’s speed under RWP model is given as follows [7,
14]

fV (v) =
1

v ln(vmax

vmin
)

The expected relative speed of two mobile nodes is given
by

ṽ =

∫ vmax

vmin

∫ vmax

vmin

∫ 2π

0

fV (v1)fV (v2)fΘ(θ)v̆dθdv2dv1

=
1

2π ln2(vmax

vmin
)

∫ vmax

vmin

∫ vmax

vmin

∫ 2π

0
√

(v2 sin θ)2 + (v1 − v2 cos θ)2

v1v2
dθdv2dv1 (11)

whereθ is the relative angle between−→v 1 and−→v 2, measured
counter-clockwise from the direction of−→v 1, and the instanta-
nous relative speed is denoted asv̆, as shown in Figure 4. As
given in Theorem 4, we take thatθ is uniformly distributed.



We can see from (11) above that for different pairs ofvmin

and vmax that give the samēv, the expected relative speed
may vary. That is, knowinḡv is not sufficient to obtain the
relative speed,̃v, without taking the distribution of the speed
into account. Under the simplifying condition thatvmin =
vmax = v̄ or vmin/vmax ≈ 1, the relative speed can be given
as follows:

ṽ =
v̄

2π

∫ 2π

0

√

sin2 θ + (1 − cos θ)2dθ

=
v̄

2π

∫ 2π

0

√

2(1 − cos θ)dθ

[substitution:cos θ = cos2(θ/2) − sin2(θ/2)]

=
v̄

π

∫ 2π

0

∣

∣

∣
sin

θ

2

∣

∣

∣
dθ

=
4v̄

π
(12)

whereθ is the angle between two movement directions.

C. Inter-contact Times in Random Direction Model

Compared to the RWP model, the node distribution in RD
model is uniform:f(x, y) = 1/A [4][22], and the average
speed is simply given as̄v = (vmax + vmin)/2. When the
epoch length is small compared to average inter-contact time,
we can follow the analysis for RWP and show that the inter-
contact times are exponentially distributed, where the CDF
approximation is given as

F (t) = 1 − e−λt

whereλ = 2rv̄/A.
When two nodes move according the RD model, the CDF

for inter-contact time is approximated as

F (t) = 1 − e−λt (13)

whereλ = 2rṽ/A. Here ṽ is the relative speed of two nodes
under RD model, which can be given as follows:

ṽ =
1

2π(vmax − vmin)2

∫ vmax

vmin

∫ vmax

vmin

∫ 2π

0
√

(v2 sin θ)2 + (v1 − v2 cos θ)2dθdv2dv1 (14)

whereθ is the relative angle between−→v 1 and−→v 2, measured
counter-clockwise from the direction of−→v 1.

The results for̃v under RD model whenvmax = vmin or
vmax/vmin ≈ 1 is the same with RWP model as given in (12).

D. Summary

We can see our result for inter-contact rate for RWP is
different from the result for meeting times given in [31],
where the difference of inter-contact rates among mobile nodes
under RWP and RD models is attributed to relative speed on
the account that the relative movement angle is not uniform
under RWP model. With Theorem 4 we see that the relative
movement angle can also be considered uniform under RWP,
and that the difference in inter-contact rates under these two
models is a combined result of non-uniform node distribution

x

y

N

E
M

mobile node

−→v

r

X
l

yH

θH

Fig. 5. Calculation of Observed Arrival Rate

under RWP as explained by factorρ and the differences in the
calculation of the relative movement speed for RWP and RD
models, as shown by Equations (11) and (14), respectively.

IV. T HE EFFECT OFBEACONING ON INTER-CONTACT

RATE

In this section, we consider more realistic modeling of
mobility by considering the effect of using beacon messages
on inter-contact rate.

In the analysis in the previous section, we assumed that
when a mobile node enters within the range of another node it
is immediately sensed. In practical application scenarios, how-
ever, nodes announce their presence by broadcastingHELLO

or beacon messages at regular intervals, and a node may not
be sensed if it finishes crossing the radio circle of another
node before it sends aHELLO message. Other factors such
as transmission errors, channel contention, etc., can alsocause
nodes to missHELLO messages. Under such circumstances,
the observed inter-contact rate will be different than the inter-
contact rates discussed earlier in this section. Here we focus
on the effect ofHELLO interval on the observed rate of inter-
contact times.

We first define the expected distance covered by the mobile
node within two hello messages asHELLO Distance, LH , as
LH = TH ∗ v̄, whereTH is theHELLO interval andv̄ is the
average speed (ṽ is used when both nodes are mobile). For
practical purposes we assume that0 < LH < 2r.

Theorem 5: Let λ denote the theoretical inter-contact rate,
the observed inter-contact rate,λ′, is given as

λ′ = λ(sin θH +
π − 2θH − sin 2θH

4 cos θH

)

whereθH = arccos(LH/2r).
Proof: Let us consider Figure 5 for our analysis of

observed inter-contact rates, where a mobile nodeM crosses
the radio range ofN . We denote the distance covered within
the circle,‖EX‖, asl. Let us useyH to denote the value ofy
whenLH = l, and useθH for the correspondingθ angle. It is
easy to see that in the heavily shaded region belowyH , node
M will be detected with probability 1, whereas in the lightly
shaded area the probability will be less than 1. Formally, the
probability,Pd, that the node will be detected while crossing
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the radio circle can be given as follows as a function of the
intersection pointy:

Pd(y) =

{ √
r2−y2

r cos θH
, yH < y < r

1, 0 ≤ y ≤ yH

Due to symmetry we only consider the semicircle where0 ≤
y. It is easy to see thatθH = arccos(LH/2r) and thatyH =
r sin θH .

The expected probability of nodeM being detected byN
can be expressed as follows:

Pd =
1

r

Z r

0

Pd(y)dy

=
1

r

Z yH

0

Pd(y)dy +
1

r

Z r

yH

p

r2
− y2

r cos θH

dy

= sin θH +
π − 2θH − sin 2θH

4 cos θH

(15)

Applying Pd in relationshipλ′ = Pdλ gives the required
proof.

As expected, we notice that observed rate of inter-contact
decrease as we increase theHELLO interval.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results for mobility
characteristics. The goal of our experiments is to verify the
correctness of analytical results regarding contact times, rela-
tive movement angle, relative speed, and inter-contact times.

A. Experimental Settings

Most of our experiments use thens-2 network simulator
extended with our own code. We also use our custom simulator
for experiments in circular areas, as well as for detailed
measurements of the relative speed and movement angles.

The default settings forns-2 simulations are as follows.
Each simulation run has 40 nodes moving according to the
specified mobility model in a6000m × 6000m square area.
By default, nodes have a radio range of250m. Minimum
and maximum speeds,vmin andvmax, are3m/s and10m/s,
respectively. TheHELLO interval is set to 3 seconds.

To measure contact and inter-contact times, a node stores the
time when another node is found in its radio range for the first
time. When aHELLO message is not heard within aHELLO

interval (plus a small tolerance time), the node is marked as
gone out of radio range and the contact time is recorded as the
time elapsed. Inter-contact time is recorded when it receives
a HELLO message again from the destination. The process
repeats in this manner. For the relative speed and relative
movement angles, we use our custom simulator, and calculate
the relative speed and relative movement angles of a pair of
nodes at every 0.1 second. We ran each experiment 29 times
with random seeds. Data points presented are plotted with 95%
confidence intervals.

For Random Waypoint with hot-spots, we also use our
custom simulator for the measurement of inter-contact times
of a pair of mobile nodes,A andB, moving in a square area
of size 6000m × 6000m. A square region of width500m
is designated as the hot-spot forA. The coordinate of the
square hot-spot is set at(1500, 1500). A square region of the
same size is placed at(4500, 4500) as a hot-spot for nodeB.
To obtain the inter-contact time characteristics shown in our
experimental results, for each mobile node the probabilityof
choosing its hot-spot as its next waypoint is varied between
0.7-0.8, and the pause time inside the hot-spot is set to300s
and the pause time outside the hot-spot is set to3s.

B. Mobility Characteristics
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Below we discuss the simulation results for contact times
and inter-contact times for static locations as well as for cases
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TABLE I
RELATIVE SPEED OFMOBILE NODES UNDERRANDOM WAYPOINT

MODEL

Speed Settings Analytical Empirical
vmin vmax v̄ ṽ v̂ ṽ (95% Conf. Int.) v̂

1 22.93 7 10.726 1.532 10.72 (± 0.0034) 1.53
2 16.97 7 9.077 1.439 10.08 (± 0.0029) 1.44
3 13.56 7 9.642 1.377 9.64 (± 0.0026) 1.38
4 11.22 7 9.331 1.333 9.33 (± 0.0018) 1.33
5 9.47 7 9.108 1.301 9.10 (± 0.0020) 1.30
6 8.11 7 8.972 1.281 8.97 (± 0.0020) 1.28
7 7 7 8.913 1.273 8.91 (± 0.0020) 1.27

where both nodes are mobile. For this purpose, we place static
nodes on a25 × 25 grid, where neighboring nodes are250m
apart, for a total of 625 static nodes. These static nodes only
listen toHELLO messages sent by mobile nodes, and record
contact times and inter-contact times. Mobile nodes also record
the same statistics among each other.

1) Contact Times: Figure 6 shows the experimental and
analytical results for contact times at static locations and
among mobile nodes under RWP model. Analytical results
for these two metrics are calculated according to (4) by using
the average speed and the average relative speed, respectively.
We can see that our analysis closely approximates the experi-
mental results. We also obtain similar results for the Random
Direction model.

2) Relative Velocity of Mobile Nodes: Figure 9 shows the
histograms of relative movement angles of nodes moving
according to the RWP model in circular and square regions.
We can see that the distribution is virtually uniform for both
areas, confirming Theorem 4.

Table I shows the effect of the distribution ofvmin andvmax

on relative speed,̃v. For this, we choose seven pairs ofvmin

andvmax that produce the same node average speed,v̄ = 7.
To see the effects, we define normalized speedv̂ as v̂ = ṽ/v̄.
We can see that̂v changes as the distribution of minimum
and maximum speeds, and that empirical results confirms the
results given in Equation (11).

3) Inter-contact Times: We first look at inter-contact times
among mobile nodes. Figure 7(a) shows the histogram of
inter-contact times under Random Waypoint model. To test
the exponentiality of inter-contact times, we perform linear
regression analysis on the Quantile-Quantile (Q-Q) plot of
two data sets: recorded inter-contact times and randomly
generated exponential variates with the same average as that
of the experimental data. For linear regression, we consider
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three factors: coefficient of determination (R2), slopea, and
interceptb. As shown in Figure 7(b), the recorded inter-contact
times closely match the exponentially generated variates,with
R2 = 0.999, a = 0.995, andb = 31.03 (0.5% of average).

Under RWP model, inter-contact rates at specific locations
depend on the PDF of node distribution. Figure 8(a) shows the
average inter-contact rates observed by 625 static nodes. For
each static location, we run similar linear regression analysis
as described above for mobile nodes. Overall statistics forre-
gardingR2 values, slopes, and intercepts are shown in Figures
8(b)–8(d). We can see that exponentiality of inter-contacttimes
strongly holds at static locations. We also identify that most
of the deviations are due to border effects.

The effects of transmission range andHELLO interval on
the inter-contact rate is shown in Figure 10(a) and 10(b),
respectively. These experimental results conform to analytical
values that we obtain from (10) and (15).

Figure 11 shows the experimental and analytical results for
inter-contact rates under varying speed in square and circular
areas of the same size. As can be seen, Equation (10) with
different ρ values accurately explains differences.

Although it has been shown that the inter-contact times
can be very closely approximated as exponential under our
experimental settings, a more detailed look show that inter-
contact times differ from exponential distribution for smaller
inter-contact times as depicted in Figure 12, where the number
of bins used to get the histogram of inter-contact times is
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increased to 200, as opposed to 40 used in Figure 7(a). We
can see that for inter-contact times less than 3000 seconds,
the inter-contact time distributions of both Random Waypoint
and Random Direction differ from exponential distribution
in different ways. This shows that although exponentiality
assumption holds for both mobility models, such differences
should be considered for simulations that assume that the
inter-contact times are strictly exponential, especiallyfor small
inter-contact times.

VI. CONCLUSIONS

In this paper, we studied the properties of two commonly-
used mobility models: Random Waypoint and Random Direc-
tion. We showed analytically that the inter-contact times of
nodes can be approximated by the exponential distribution in
these models under typical opportunistic network settings. We
also provided analytical results for contact time, inter-contact
time, effect ofHELLO intervals on inter-contact rate. Through
extensive simulation study, we showed that our analytical
results for mobility characteristics are accurate.
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APPENDIX

To find the expected distance covered by a mobile node,
M , before exiting the radio range of static nodeN , let us
consider the graph shown in Figure 14. For simplification, we
take the direction from the location ofN to the pause point,
P , as the direction ofx-axis. Letθ denote the angle of the new
movement direction ofM measured counter-clockwise from
the direction ofx-axis, and letd denote the distance covered
before nodeM exits the radio circle at pointX . Assuming
that thex-coordinate ofP is xp, and the transmission radius
is r, from trigonometric relations we can have:

r2 = (d sin(θ))2 + (d cos(θ) + xp)
2

= d2 + 2dxp cos(θ) + x2
p

= d2 + 2dxp cos(θ) + x2
p cos(θ)2 + x2

p sin(θ)2

= (d + xp cos(θ))2 + x2
p sin(θ)2

Solving the equation above ford, we have

d =
√

r2 − x2
p sin(θ)2 − xp cos(θ)

Without any particular assumption regarding the original
movement direction ofM and the location ofN , we assume

that θ is uniformly distributed and give the following expres-
sion for the expected distance,d̄,

d̄ =
1

2πr

∫ r

0

∫ 2π

0

(√

r2 − x2
p sin(θ)2 − xp cos(θ)

)

dθdxp

=
1

2πr
∗ r

∫ r

0

∫ 2π

0

√

1 −
(xp

r

)2

sin(θ)2dθdxp

=
1

2π

∫ r

0

E

(

2π
∣

∣

(xp

r

)2
)

dxp

(change of variable:z = xp/r)

=
r

2π

∫ 1

0

E
(

2π|z2
)

dz

=
r

2π
∗ 2π ∗ 3F2

(

−1

2
,
1

2
,
1

2
; 1,

3

2
; 1

)

≈ 0.901r

whereE is the incomplete elliptic integral of the second kind,
and3F2 denotes hypergeometric series.


