Designing Quality of Service Based Multimedia
Systems Using the Unified Modeling Language

Muhammad Abdulla, Duminda Wijesekera, and Hassan Gomaa
Department of Information and Software Engineering
George Mason University,
Fairfax, VA 22030-4444, USA
{amhnd, dum nda, hgonaa}@ se. gnu. edu
home pageshtt p: // ww. i se. gnu. edu/ ~{anmhnd, dum nda, hgonmaa}

Abstract— This paper addresses the usage of UML for re- In ensuring that a QoS aware system fulfills its correctness

quirement specification and design of multimedia systems.tl criteria, it must rely on resources of the operating platfor
shows how modular specifications of components used in Qosduring the delivery of specified services. This is due to

cognizant services increase their potential to reuse. It nuels the finit ¢ d limitati f .
common components such as negotiators, monitors, and resge '€ TINIE nature and limitations on resources or any given

managers using UML models enhanced with OCL constraints. Operating platform. In the past, QoS sensitive systems have
The paper also describes how generic designs can be used t@btained such assurances from underlying operating phagfo

derive schedules for QoS cognizant services. by utilizing appropriate service reservation, scheduting ex-
Index Terms— Multimedia System, Quality of Service (QoS), ception handling mechanisms; and based on them entered into
Negotiation for QoS QoS contracts with service suppliers and component masager
Such QoS contracts are binding agreements between service
|. INTRODUCTION providers and consumers, and either party may need to know

Systems for whichquality is an integral aspect of theirif the other party lives up to its obligation. In order to dg so
functional correctness are generally considered Qualfty ome service providers and consumers resort to monitoring
Service (QoS) cognizant systems. Multimedia systems, n#te provided and utilized quality in terms of QoS parameters
works, systems providing object services ([HV97]), andeothand take corrective action in case of contractual violation
performance centric software systems are some examplesdobther usage of QoS monitoring is the recent trend of pgicin
QoS based systems. Over the recent past there have b@es aware services, based on provided levels of QoS. We
tremendous advances made in these areas individually, eyplore the consequence of such QoS contracts and mougjtorin
not as much in exploring the common characteristics that daheoughout the software life cycle.
solely due to having QoS as their underlying requirement. As
the Unified Modeling Language (UML) ([RJB99], [BRJ99], As stated, the objective of this paper is to examine the ¢xten
[GomO00]) is becoming the lingua franca of software design,io which QoS sensitive applications can be designed usiag th
is worth knowing the degree to which QoS based systems ddNL. We seek generic, precise and useful modeling artifacts
be modeled using UML. This paper is an attempt to answer fulfill our objectives. By examining numerous applicaitso
that question. that use QoS parameters, we have identified some common

One of the questions that any QoS based service desigolaracteristics of most QoS sensitive applications. Wevsho
encounters is the representation of QoS parameters. Becdusv to model these common characteristics with the UML
there are numerous services from different applicationalosn notation. We show their usefulness by indicating how they
that use QoS parameters, there is no generally acceptedcset be used in influencing scheduling decisions made by
of QoS metrics. Specifications of such systems should bederlying operating systems and networks. The rest of the
precise and feasible. Specifying a television broadcasinas paper is organized as follows. Section 2 describes relatek. w
that makes most viewers happy is an example of a realis8ection 3 describes UML modeling of QoS cognizant systems
but ambiguous specification. Specifying a zero transmissiin the requirement specification phase. Section 4 describes
delay for network services is unambiguous but an unrealisQoS modeling in the analysis and design phase. Section 5
specification as no network can provide zero transmissipresents possible usage of UML specifications in multimedia
delay. scheduling. Section 6 gives our conclusions.

1. RELATED WORK and design QoS cognizant software throughout its life cycle
There has been a considerable amount of work modXY-e begin this process with the requirements gathering phase

ing resources using UML. Selic [Sel00] describes a general L .
framework for modeling resources using UML. A high—levef" QoS Modeling in the Requirements Phase
view of resource modeling and the suitability of UML models As stated, quality of service specifications arise with jsec
to describe such frameworks are shown. This can be us@gcification of QoS metrics and their acceptable ranges. Fo
as a general guideline for specifying particular example Bxample, in multimedia services frame rates (i.e. frames pe
modeling QoS cognizant systems. As will be shown hergécond), end-to-end service delay, jitter (i.e. delayatanm
UML diagrams alone are insufficient for precise and detaildietween frames in a stream), drop rate (i.e. the percentage o
specifications. In this paper, we examine the way and extd@st frames), and inter-stream synchronization betweefioau
to which UML diagrams can be used and the utilization ¢ihd video are some specifiable QoS parameters. Detailed
OCL for precise modeling. descriptions and properties of such QoS parameters appear
Gomaa [Gom00] and Benyoucef et al. [BAVKO1] use exin [WCH] and [CCHOQ]. In network services, bandwidth,
amples of electronic commerce applications. In these franits allowable variations, end-to-end delay, and drop rates
works, the negotiation takes place at the beginning. Onee Pecifiable parameters. Secondly, not only the parameters,
deal is made, there will be no more negotiation. Howeveiut also their acceptable ranges matter and are application
in a multimedia system as described in our example, Qé&gecific. For example, 30 frames per second is ideal for
parameters for each movie being serviced can change oVileo transmission in North America, but a minimum of 18
time, necessitating the need to build a dynamic framewoffames per second is necessary in order to maintain the sense
where the negotiation process can continue until the mow@é motion for human viewers. Also three minutes of end-
has been completely delivered. We show how such negotiati®nend delay with less than two milliseconds of difference
frameworks can be designed. between audio-video starting times (mis-synchronizatioay
Blair et al. [BBBC98] present a comprehensive descriptiokhe acceptable for human viewers, but a video based automated
of distributed multimedia systems and their formal speaific target tracking device may not tolerate more than half arsgco
tions. However, our attempt is to describe generic propedf delay irrespective of audio-video mis-synchronizatioenkke,
QoS cognizant systems within framework of UML rather tha@lll QoS parameters and their acceptable ranges should be
using formal methods. Consequently, we provide details Pecified.
specifying negotiation and monitoring frameworks and elac Secondly, as stated in Section I, both service providers and
less emphasis in formalizing properties of multimedia eyst CONSUMers are aware of the service provider’s limitatiarrsoit
etc. being able to always guarantee the contracted servicetguali
Menacsé et al. [MBDO1] describe an approach for prélue to unforeseeable circumstances beyond their own dontro
serving QoS of e-commerce sites by self-tuning, which [Or €xample, in providing audio-video services, some servi
accomplished through analyzing the service quality predtid INterruptions or degradations at the server's input/oueu-
within a time window in the immediate past to adjust it¥ic€S may require the frame rate to be lowered, or the quality
future performance characteristics. The main focus of ti%frames be degraded. In transport layer services of nésyor
work is to provide an overall optimization on the server fofongestion may result in temporarily lowering the bandtwidt
all requests. No negotiation between client and server #&d increasing the end-to-end delay. Some applications may
considered. However, in some QoS applications it is possitl€ able to withstand such deviations from contracted mihima
for requests to have different QoS requirements, for whieh tréquirements, while others may prefer a temporary suspensi
server should arrange resources accordingly. We show hgiservices. Therefore, not only the acceptable QoS lebels,
to model and design such systems where each request fi@l§P @ handling method for exceptions needs to be specified

clients should be considered separately according to Q@8 in service contracts between the providers and the consumer
requirements. of QoS sensitive services.

Thirdly, the nature of the contractual agreement is a part
of the specification. For example, one server may wish to set
its own limits for a service, while another may be able to

In this section, we explore the nature of QoS specificatiore;cept consumer requests and make counter offers based on it
and examine some common characteristics of quality seasitabilities and permissions. This is specially true in todayeb
services. We then show how they can be modeled usibhgsed services, where new negotiation paradigms are being
specification mechanisms provided by the UML language. Vexperimented with. Therefore, the negotiation framewa&dh
show how appropriate UML models can be used to specify be considered with QoS specifications.

I11. M ODELING QOS AWARE SERVICES

request movies with specified QoS parameters (e.g. frarag rat

end-to-end delay, jitter, drop rate, and synchronizatifam)

delivery. If the server cannot satisfy the required movie&SQa

VoD Client Play Remote Movie negotiator in the VoD server bargains and negotiates aabkpt
<<Q0S-Sensitive Actor>> QoS parameters with the client. In addition, the server also
<<QoS-aware Use Case>> maintains a QoS monitor to provide QoS corrections to the
(@) service, while the service is being provided.

We will discuss the requirement analysis and design issues

StructFeatureDef through multiple view modelwith UML. A multiple-view

model captures different aspects of a software productfare
functional modeling, static modeling, and dynamic modglin
Using the UML notation, the functional view is represented
through a use case model in the requirements phase, a static
model view through a class model, and a dynamic model view

qoSRange: QoSRange
exceptionHandling:ExceptionHandling
negotiatiation: Negotiation

monitoring: Monitoring

(b) through a collaboration model and a statechart model.
_ _ The use case model view addresses the functional require-
Fig. 1. UML Extensions for Use Case ments of a software product line in terms of use cases and

actors. An actor is a user type. A use case describes the
Fourthly, to avoid exploiting QoS parameters either by the duence of interactions between the actqr _and the system,
provider or the consumer of service, and to use as a conditl‘f‘)%ns'dered as a blac_k ng' Use case descriptions for the VoD
for raising an exception or to aid in the continued negatrati example are shown in Figure 2.

process, most (but not all) providers and consumers of Qo
aware services use monitoring. Accordingly, monitoringaza

bilities must be a part of the requirements specification of

QoS cognizant specification.

SNow we give a typical usage scenario for our example
VoD server. Suppose the server receives a request for a movie
5ol | . mov with the following QoS parameters.
« 30 frames/second (fps) for the audio with neither jitter
nor drops.
B. QoS Aware Use Case o 30 fps for video with a jitter of less than 3ms. and a
In design methodologies that use the UML design language, maximum drop rate of 0.1%.
Use Case models are used to specify the user’s requirementsine server checks and finds out tiatl | . mov is available
sometimes referred to as stakeholders interests in thersystiy jts archive, and makes a counter offer of 25 fps but agrees
In order to utilize use cases for QoS based services, they Ngg the other QoS parameters. Finally, the QoS negotiation

to incorporate the following QoS requirements: results in, say, 28 fps, 0.01 drop rate for both audio andovide
1) QoS parameters and their acceptable values or vakteeams, and a maximum jitter of 3ms for video and Oms for
ranges. audio streams. The server then begins to send the movie and
2) Exception handling starts monitoring its services. The monitor checks for tl&Q
3) QoS negotiation framework periodically and informs the server of QoS violations. For
4) QoS monitoring example, if the drop rate of video streams increases to 0.02,

To accommodate these aspects, we extend use case mdtielsnonitor will make the server renegotiate the QoS contrac
to supportQoS aware use caseshere an actor in a QoS Say the new negotiation ends up with an updated QoS contract
aware use case isQoS sensitive actoAs shown in Figure 1, of a maximum drop rate of 0.01 at 25 fps with less than 3
these extensions are stereotyped ([RIB99ka&®S awar e jitter rate for the video. This process can go on dynamically
use case>>» and<QS sensitive actor:>>. Inorder until the movie transmission is complete or the negotiaiton
to extend use cases and actors, we propose four enhancemanmssccessful.
to the St r uct Feat ur eDef class in the UML meta-model
(IWKO1]). The enhancements we propose are to include a !V- SOFTWARE ARCHITECTURE FORQOS SYSTEMS
range for QoS parameters, an exception handling mechanisnvedia types, service components for each media type, and
and negotiator and a monitor, as shown in Figure 1(b). the structure of QoS systems should be considered at the

We illustrate the use of theses aspects by an example spachitectural level.
ification and design of aideo on demand (VoDhultimedia It is natural to assign anedia componento each of the
server. Our VoD service uses a client-server paradigmn@lie media types of the QoS system such as audio, video, and

QoS System

Server Media Media Media

Use CasePlay Remote Movie

Scope QoS Cognizant Multimedia Server System
Goal: Play a movie with specified QoS from a remg
server.

Context of Use Multi-client VoD system.

Primary Actor : VoD Client.

Main Sequence

1. VoD Client requests movie with specified QoS
delivery.

2. VoD Server acknowledges requests and informs clief
requested movie is available.

3. Server obtains available QoS parameters.

4. If required QoS parameters can be satisfied, the Se
sends a positive acknowledgment message to the clie
5. The Server begins to send the movie and turns
the QoS monitoring, Q0S negotiation, and QoS excep
handling.

6. The Server sends an ending message at the end and
the connection.

Alternatives:

la. Un-acknowledged client times out.

1b. Request for unavailable movies are denied.

1c. Syntactically incorrect or semantically invalid reqtse
are refused.

1d. Defaults are substituted for unspecified or und
specified QoS parameters.

2a. If the service capacity is exceeded, the client req est

is queued.

2b. When feasible, queued requests are serviced.

3a. If service is overloaded, server returns service ufa
able message to client.

4a. Service with QoS parameters outside the service
range (such as video frame rate higher than 50 fps or ay
video jitter larger than 5 ms), are refused.

4bh. For service within serviceable range of QoS paramet
but cannot be met due to service loads, the serv
negotiator enters into a QoS negotiation session with
client.

6. If there are any QoS violations reported from the mon
during the service, the server warns the client and en
in to QoS negotiation session again.

Component Component 1 Component 2 Component n

te

Service
Component n

Service
Component 1

Service
Component m

Service
Component 1

Fig. 3. General Architecture of QoS Systems.

PN text, etc. However, if there is a tight correlation betweao t
_components, it might be preferable to merge them into one. Fo
't iexample, for a VoD server with an optional language selactio
for audio and on-screen text, text and audio components can
be merged as a single media component.
I'Ver Service component®r each media component should be
. assigned according to the requirements of the applications
Ofpossible services for media components include negatiatio
I0Thmonitoring, synchronization, resource management, aald re
time scheduling etc. Besidessarver componens needed for
clap@naging media components. Server and media components
may or may not have the same service components. A general
architecture of QoS systems is given in Figure 3.

V. QOS MODELING FOR THEANALYSIS AND DESIGN
PHASES

er. 1he use cases proposed in the requirements gathering phase
must be analyzed and corresponding software artifacts de-
igned during the design phase of the software life cycle.
Based on this analysis, we propose that the QoS cognizant VoD
server consists of three major service components as fellow
o QOS negotiator
o QO0S Monitor
able ¢ Resource manager
dio- The first two components, the QoS negotiator and the QoS
monitor emerge as direct consequences of the requirements,
ers)s the requirements specify the need for negotiation and
er'snonitoring. The third component, thesource managers
théecessary because proper management of system resources is
critical for the performance of QoS cognizant services. The
torresource manager is consulted by the negotiator in order to
terfind out if the available amount of system resources in making
admission control decisions and making appropriate counte

U

ai

Fig. 2. Use Case Description

offers to the requested QoS parameters.

In particular, QoS cognizant services such as multimedia,
by their very nature require the combination of many sub-
services such as video and audio that may be cognizant
of sub-component QoS parameters. An example is that a
movie QoS may be specified in terms of audio QoS, video

Multimedia Client

T
[

Multimedia
0S

Resource
Capabilities

oordinator] Negotiation <<system>>

Resource MQO.S
Manager onitor

Negotiator

——————————

|

|

|

|

|

|

|

| ' —r— ‘

Stream Resource
! —
¥ JAN

Audio Video
0S QoS
Coordinator Coordinator VideoNegotiator‘ ‘ AudioNegotiatof

S
Audio i Audio Video i Video
Audio Video
Resourcel |\eqotiator] | Q0S Resource| |Neqgotiatol QoS
er Monitor

MovieQo! Audio Video
Resource Resource
¢4 Manager Manager

Monitor

Mana Monitor

Negotiates
over
>

" N >
AudioMonitor _

< uses

Fig. 4. Static Structure of Multi-layered QoS Negotiation.

(a) Class Diagram of Audio-Video Client-Server Applicatio

QoS and synchronization QoS parameters. Therefore, making
an estimate of available service capacity requires thatethe
components compute their respective capacities and provid
estimates so that the available capacity for the completécee
can be estimated.

What emerges from our analysis is the realization that
both the multimedia QoS server and audio, video server

components share the same structure of having negotiator, * *
resource manager, and monitor components. The negotiator
negotiates with higher or lower layers over QoS, the monitor

checks QoS parameters against the service, and the resource * *
manager handles allocation of resources such as CPU, buffer Audio Video
etc. Components of the higher layer negotiate with corre- Frame| | Frame
sponding components in the lower layer to get the available (b) Movie Structure

QoS capabilities. They are shown in Figure 4. Secondly, QoS
parameters need to be specified using QoS parametersF'%f
sub components and parameters qualifying their combinatio
which we refer to as theynchronizatiorcomponent.

5. Server and Media Class Diagrams.

. . and allowable audio-video mis-synchronization limits iillim
A. Static Modeling seconds are metrics of the combinations. Synchronization
The static model is used to depict the static structural@specomponents are implicitly assumed and are used to describe
of a software product line by modeling classes, their attéb inter-component synchronization between audio and video
and relationships between classes [Booch99]. Objectsén #treams and intra-component synchronization, such as max-
collaboration model are instantiated from classes in teescl imum jitter within video frames [CT02].

model. . . R .
Following the generic model shown in Figure 4, a class The class diagram given in Figure 5(a) has associations

diagram for the VoD server is given in Figure 5(a). The seerFtween VideoMonitor and VideoQosS, etc. The constraintt tha

and its subsystems share a general structure: Each of them Yige0Server will only use VideoQosS also can be expressed

resource manager, negotiator, and monitor parts whose qu}:OCL as follows:
tions are described above. The monitor class for example wil
be responsible for checking QoS parameters of multimegigontext: VideoServer

components such as audio, video, and synchronization. server.stream.qos> forAll (oclType = VideoQoS)

A QoS specification for a movie is shown in Figure 5(b).

In the example specification, the movie consisting of an@udi Other constraints corresponding to relationships between
stream, and a video stream. Frame rates and drop rateQofS types and the subcomponents of the negotiator, monitor,
individual streams are parameters of individual componherand Resource Manager can be specified similarly.

Starting
Processing
T
[} @ Client QoS Servicing 1 | Client QoS

I
I Servicing N
request rejected

request received

negotiatio
not

successfu

QoS not
satisfied

QoS
Satisfied |
|

QoS violated

sending

negotiating -
film

negotiation successfu

Shutting Down

Fig. 6. Statechart for the Server.

B. Dynamic Modeling

Audio and Video Resource Managers. The Monitor checks
for QoS violations in audio, video, or in audio-video syn-
chronization. Negotiator will be responsible for buildingw
service agreements with the client in the case of QoS service
degradations.

A more detailed interaction between different components
of the video server is given in a sequence diagram as shown in
Figure 8. The diagram depicts a transaction between theiserv
and the client, with a QoS violation. First, the client astisd
movie with some QoS parameters (sequence 1.1). The server
obtains and offers its available QoS (1.2-1.12) and, if pi=zk
by the client (2.1), begins to send the movie (2.2) and asks th
monitors to monitor the QoS parameters (2.3-2.7). In the cas
of a QoS violation (2.8), the server informs the client (@)
negotiates for a new QoS (2.10-3.1). This process continues
till either the negotiation is not successful or the movielen
(3.2). Due to space limitations, interactions between uss®
managers and other components are not included.

Behavior of proposed components can be further specified
by writing appropriate OCL expressions. For example, the
video monitor and the synchronization monitor can be speci-

As discussed earlier, a dynamic model view is representié@d in OCL syntax as follows.

through a collaboration model and a statechart model. T
statechart model view, along with the collaboration mod

view, addresses the dynamic aspects of a software prod

line. A statechart is developed for each state dependeatbb

in the collaboration model. Each state dependent object in

collaboration diagram is specified by means of a statechar

The statechart diagram for the VoD server shown in Figure
describes the state dependent behavior of the server, where
the Pr ocessi ng substate includes several concurrent state

nl%ontext: VideoMonitor

”'Qperation: checkQoS (s: Stream

Uf (s.videoFrameSpeeg 30)
return false

it (s.videolditter> 0.003)
return false

8 (s.videoDropRate> 0.001)

return false

l“?eturn true

L.

as a form of anand-state, each of which specifies the

T

state dependent behavior of client QoS request servicing.
Statechart assumes that there is a fixed upper boumdtof

the number of requests that can be processed by the server.
The collaboration model view addresses the dynamic §

pects of a software product line. It is used to depict the abje

that participate in each use case, and the sequence of rasss

passed between them [BRJ99], [GomO00].

The collaboration diagram shown in Figure 7(a) show
the initialization phase of the system. The multimedia Qg

Context: Monitor

| Operation: checkSynch (s: Stream)

;Si_f (' s.AudioFrameNo< s.VideoFrameNo - 1)
return false

aH (' s.AudioFrameNo> s.VideoFrameNo + 3
return false

Sreturn true
S

coordinator initializes Resource Manager, Negotiatord an The OCL constraint for the/i deoMoni t or states that
Monitor only once for the first request and other objectmiaximum speed should be 30 fps, video jitter (i.e. delay

are initialized for each request. When a new request

variation between successive video frames) should be less

received, the Multimedia QoS Coordinator will start Audidhan3ms and the drop rate should be less ti@ari%. The
QoS Coordinator and Video QoS Coordinator, each of whiédCL constraints of thébni t or 's checkSync method states

will initialize corresponding resource managers, monisord
negotiator. Figure 7(b) shows the interactions betweeaabj
for a successful service including a scenario in which gjgeti

that audio frames should not be behind video frames by more
than one frame, and video frames should not be behind audio
frames by more than three frames. As shown in Figure 8, if

QoS is violated. In this phase, the Resource Manager aflecathere is any violation of QoS parameters, say an increase in

resources for the current transaction by communicating wi

ivideo drop rate that exceeds 0.1%, the Audio QoS Monitor

:Multimedia
Movi e Request QoS QS response
Caoordinator Send S
N Initiali = Initialize Arrange violat%ns
Client nitralize / \ \ Cllent resources
Initialize Resour ce
‘Resource Start ‘Resource | &'!ocated
Manager
A \\ Arrange t .
Initi allzze :Audio QoS audi o Moni t or
:Audio Coordinator. resour ce N QS Send | Vi dgo
ftnce e ik
Manger | 7 T e e sbuees ™
fnitialize / N ‘Audio QoS
- ‘ :AudioNegotiator :VideoMonitor Audi 0 Monitor
-AudioMonitor resource Send
v al | ocat ed vi deo
Initialize :Audio :Video sgnd/\ QS
Video Resource | | Resource ‘“eo i °\'/;’gég 005
Resource :VideoNegotiator Manager Manager o - : -
Manager Hanager Aanager :VideoNegotiator Monitor

(a) Initiation Phase (b) Transmission Phase

Fig. 7. Collaboration Diagrams of the Multimedia System

ent ‘ ‘ Server ‘ ‘Negotia(or‘ ‘AudioNegotiator ‘VideoNegotiator HAudioServer ‘ ‘VideoServer ‘ ‘Monitor ‘ ‘AudioMonitor ‘ ‘VideoMonitor

‘ Cl
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
2.1
2
2.3
2.8
2.9
2.11
2.10
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
3.1
3.2

Fig. 8. Sequence Diagram of Audio-Video Client-Server Agailon with a QoS Violation.

will send a message to Monitor, which in turn informs th©CL than high-level QoS characteristics such as avaitgbili

Server. The Server will ask the Negotiator for a new set Qafiarantee, and mean time between failures. Ongoing work
parameters with the Client. is addressing how the latter parameters can be specified as

As shown in this previous section, low-level QoS parametef@Mbinations of the former parameters.
such as delay, latency, jitter, etc. are more easily spdcifie

Acceptable
Interval

_ x1 _ X2 |
I I 1
O\ e
woser S | |
I Il r .
T T I \
| .
\ \ \
b e [
<y - ¥2 |

Fig. 9. Audio-video Scheduling

VI. USINGUML DESIGNS FORSCHEDULING

VII. CONCLUSIONS ANDFUTURE WORK

Modular specification of components used in QoS cognizant
services increase their potential for reuse. We have shown
how some common components such as negotiators, monitors
and resource managers can be specified using UML models
enhanced with OCL constraints. As UML is emerging as the
standardized design language, these components can leel reus
by different applications. We have shown how such generic
designs can be used to derive schedules for QoS cognizant
services.

Design models can be used in test case generation. However,
design models alone cannot express some of the design
constraints of the system. Therefore, generating tessfes@
design models and OCL expressions is useful to have a more

Specifying QoS parameters at requirements and desighmplete test of the system under development.
phases can help to derive decisions on scheduling as showpfter basic functional requirements are met, validity of th
in Figure 9. Assuming, for example, a set of QoS parameteysftware under development will be directly dependent upon

are specified as follows:

Context:AudioStream
self.jitterRate = 0
self.dropRate = 0
Context:VideoStream
self.jitterRate< 0.003
self.dropRate< 0.001
Context:Stream
self.frameRate = 25
self.consecutiveSyncDrift 10

How scheduling can be done for the constraints given above
can illustrated using Figure 9. The scheduler can derive th
the length of the ideal presentation interval should be betw

the performance of the system [WV00]. Gomaa and Menascé
[GMOO0], [MGO00] and Grassi et al. [GMO01] discuss a UML
approach based on performance analysis at architectugk lev
However, there is limited literature on performance tegtin
using UML specifications. Future work includes using OCL to
test the functional and performance characteristics dfvsoé
systems.

REFERENCES

[BAVKO1] M. Benyoucef, H. Alj, Vezeau, and R. Keller. Comlgid ne-

gotiations in e-commerce: Concepts and architecttlectronic

Commerce Reasearch, vol. 2001.

588(:98] G. Blair, L. Blair, H. Bowman, and A. Chetwynd.Formal
Specification of Distributed Multimedia System&CL Press,
London, UK, 1998.

40ms, according to the constraint that the frame rate for ti&RJ99] Grady Booch, James Rumbaugh, and Ivar JacobEua Unified

stream is 25Hz. Given that the audio jitter should be equal
0, we can deduce that no difference in the presentation sme'i
tolerated. Therefore, the presentation interval betwestioa

Modeling Language User GuidéAddison-Wesley, 1999.

CHOO] Andrew Campbell, Geoff Coulson, and David HutchisoA
Quality of Service Architecture Department of Computing,
Lancaster University, 2000.

packets,z;, should be equal to the ideal presentation intervdf:702] ~ Stefan Conrad and Klaus Turowski. Temporal OCL: Mept

Specification Demands for Business Components. 2002.

From the constraint that the video jitter should be less th@ghioo] Hassan Gomaa and Daniel Menascé. Design and Pexfaen

or equal to 0.003(s), we can find out that difference between
length of presentation interval for videg, should be no more

than 3ms.

Constraints for drop rates indicate that audio and videp dro
rates should not be more that 0% and 0.1%, respectiv
Consecutive synchronization drift ((WSNF99]), the laige
difference in presentation between two different media com

Modeling of Component Interconnection Patterns for Distied
Software Architectures. Proceedings Workshop on Software
Performance, ACM Press, Ottawa, Cana@900.

[GMO01] Vincenzo Grassi and Raffaela Mirandola. UML Modegi of
Performance Analysis of Mobile Software ArchitecturéML
2001, The Unified Modeling Languag2001.

igmeO] Hassan GomaaDesigning Concurrent, Distributed, and Real-

Time Applications with UML Addison-Wesley Object Technol-
ogy Series, 2000.

ponents is given to be 10(ms)_ This constraint asserts tﬁé\{gﬂ Michi Henning and Steve Vinoskilnside CORBA: Distributed

Object Standards and Application#ddison-Wesley, 1997.

the variation in presentation time between audio and Vid@@spo1] Daniel A. Menascé, Daniel Barbara, and Ronald Ged Pre-

frames should not exceed 10ms. More constraints can be
specified for other requirements about media presentatidn a
synchronization. Further details on deriving scheduliraf
QoS specifications can be found in [PSWO00] and [WSNF99].

serving QoS of E-commerce Sites through Self-Tuning: A Per-
formance Model ApproachEC'01, 2001.

[MGO00] Daniel Menascé and Hassan Gomaa. A Method for Design
and Performance Modeling of Client/Server SystemiEE
Transactions on Software Engineering, Vol. 26, No2000.

[PSWO00]

[RIB9Y]
[Seloo]

[WCH]

[WKO1]

[WSNF99]

[WVO00]

Raymond A. Paul, Jaideep Srivastava, and Dumindas@k-
era. Test and Evaluation of Distributed Information Sayste
Network. Journal of the International Test and Evaluation
Association 2000.

James Rumbaugh, Ivar Jacobson, and Grady Bddsh.Unified
Modeling Language Reference Manu&lddison-Wesley, 1999.
Bran Selic. A Generic Framework for Modeling Res@sr with
UML. |EEE, 2000.

D. G. Waddington, G. Coulson, and D. Hutchis@pecifying QoS
Multimedia Communications within Distributed Programiin
Environment Department of Computing, Lancaster University.
Jos Warmer and Anneke Kleppe.Unification of Static and
Dynamic Semantics of UMLUML 2001-The Unified Modeling
Language, Fourth International Conference, SpringersP28901.
Duminda Wijesekera, Jaideep Srivastava, Anildder and Mark
Foreti. Experimental Evaluation of Loss Perception in @ardgus
Media. IEEE Multimedia Systemd999.

Eliane J. Weyuker and Filippos I. Vokolos. Experiengith Per-
formance Testing of Software Systems: Issues, and Appesach
and Case Study.EEE Transactions on Software Engineering
2000.

