
1

Designing Quality of Service Based Multimedia
Systems Using the Unified Modeling Language

Muhammad Abdulla, Duminda Wijesekera, and Hassan Gomaa
Department of Information and Software Engineering

George Mason University,
Fairfax, VA 22030-4444, USA

{amhmd,duminda,hgomaa}@ise.gmu.edu
home pages:http://www.ise.gmu.edu/∼{amhmd,duminda,hgomaa}

Abstract— This paper addresses the usage of UML for re-
quirement specification and design of multimedia systems. It
shows how modular specifications of components used in QoS
cognizant services increase their potential to reuse. It models
common components such as negotiators, monitors, and resource
managers using UML models enhanced with OCL constraints.
The paper also describes how generic designs can be used to
derive schedules for QoS cognizant services.

Index Terms— Multimedia System, Quality of Service (QoS),
Negotiation for QoS

I. I NTRODUCTION

Systems for whichquality is an integral aspect of their
functional correctness are generally considered Quality of
Service (QoS) cognizant systems. Multimedia systems, net-
works, systems providing object services ([HV97]), and other
performance centric software systems are some examples of
QoS based systems. Over the recent past there have been
tremendous advances made in these areas individually, but
not as much in exploring the common characteristics that are
solely due to having QoS as their underlying requirement. As
the Unified Modeling Language (UML) ([RJB99], [BRJ99],
[Gom00]) is becoming the lingua franca of software design, it
is worth knowing the degree to which QoS based systems can
be modeled using UML. This paper is an attempt to answer
that question.

One of the questions that any QoS based service designer
encounters is the representation of QoS parameters. Because
there are numerous services from different application domains
that use QoS parameters, there is no generally accepted set
of QoS metrics. Specifications of such systems should be
precise and feasible. Specifying a television broadcast asone
that makes most viewers happy is an example of a realistic
but ambiguous specification. Specifying a zero transmission
delay for network services is unambiguous but an unrealistic
specification as no network can provide zero transmission
delay.

In ensuring that a QoS aware system fulfills its correctness
criteria, it must rely on resources of the operating platform
during the delivery of specified services. This is due to
the finite nature and limitations on resources of any given
operating platform. In the past, QoS sensitive systems have
obtained such assurances from underlying operating platforms
by utilizing appropriate service reservation, schedulingand ex-
ception handling mechanisms; and based on them entered into
QoS contracts with service suppliers and component managers.
Such QoS contracts are binding agreements between service
providers and consumers, and either party may need to know
if the other party lives up to its obligation. In order to do so,
some service providers and consumers resort to monitoring
the provided and utilized quality in terms of QoS parameters
and take corrective action in case of contractual violations.
Another usage of QoS monitoring is the recent trend of pricing
QoS aware services, based on provided levels of QoS. We
explore the consequence of such QoS contracts and monitoring
throughout the software life cycle.

As stated, the objective of this paper is to examine the extent
to which QoS sensitive applications can be designed using the
UML. We seek generic, precise and useful modeling artifacts
to fulfill our objectives. By examining numerous applications
that use QoS parameters, we have identified some common
characteristics of most QoS sensitive applications. We show
how to model these common characteristics with the UML
notation. We show their usefulness by indicating how they
can be used in influencing scheduling decisions made by
underlying operating systems and networks. The rest of the
paper is organized as follows. Section 2 describes related work.
Section 3 describes UML modeling of QoS cognizant systems
in the requirement specification phase. Section 4 describes
QoS modeling in the analysis and design phase. Section 5
presents possible usage of UML specifications in multimedia
scheduling. Section 6 gives our conclusions.

2

II. RELATED WORK

There has been a considerable amount of work model-
ing resources using UML. Selic [Sel00] describes a general
framework for modeling resources using UML. A high-level
view of resource modeling and the suitability of UML models
to describe such frameworks are shown. This can be used
as a general guideline for specifying particular example in
modeling QoS cognizant systems. As will be shown here,
UML diagrams alone are insufficient for precise and detailed
specifications. In this paper, we examine the way and extent
to which UML diagrams can be used and the utilization of
OCL for precise modeling.

Gomaa [Gom00] and Benyoucef et al. [BAVK01] use ex-
amples of electronic commerce applications. In these frame-
works, the negotiation takes place at the beginning. Once the
deal is made, there will be no more negotiation. However,
in a multimedia system as described in our example, QoS
parameters for each movie being serviced can change over
time, necessitating the need to build a dynamic framework
where the negotiation process can continue until the movie
has been completely delivered. We show how such negotiation
frameworks can be designed.

Blair et al. [BBBC98] present a comprehensive description
of distributed multimedia systems and their formal specifica-
tions. However, our attempt is to describe generic properties of
QoS cognizant systems within framework of UML rather than
using formal methods. Consequently, we provide details of
specifying negotiation and monitoring frameworks and place
less emphasis in formalizing properties of multimedia system
etc.

Menacsé et al. [MBD01] describe an approach for pre-
serving QoS of e-commerce sites by self-tuning, which is
accomplished through analyzing the service quality provided
within a time window in the immediate past to adjust its
future performance characteristics. The main focus of the
work is to provide an overall optimization on the server for
all requests. No negotiation between client and server are
considered. However, in some QoS applications it is possible
for requests to have different QoS requirements, for which the
server should arrange resources accordingly. We show how
to model and design such systems where each request from
clients should be considered separately according to theirQoS
requirements.

III. M ODELING QOS AWARE SERVICES

In this section, we explore the nature of QoS specifications,
and examine some common characteristics of quality sensitive
services. We then show how they can be modeled using
specification mechanisms provided by the UML language. We
show how appropriate UML models can be used to specify

and design QoS cognizant software throughout its life cycle.
We begin this process with the requirements gathering phase.

A. QoS Modeling in the Requirements Phase

As stated, quality of service specifications arise with precise
specification of QoS metrics and their acceptable ranges. For
example, in multimedia services frame rates (i.e. frames per
second), end-to-end service delay, jitter (i.e. delay variation
between frames in a stream), drop rate (i.e. the percentage of
lost frames), and inter-stream synchronization between audio
and video are some specifiable QoS parameters. Detailed
descriptions and properties of such QoS parameters appear
in [WCH] and [CCH00]. In network services, bandwidth,
its allowable variations, end-to-end delay, and drop ratesare
specifiable parameters. Secondly, not only the parameters,
but also their acceptable ranges matter and are application
specific. For example, 30 frames per second is ideal for
video transmission in North America, but a minimum of 18
frames per second is necessary in order to maintain the sense
of motion for human viewers. Also three minutes of end-
to-end delay with less than two milliseconds of difference
between audio-video starting times (mis-synchronization) may
be acceptable for human viewers, but a video based automated
target tracking device may not tolerate more than half a second
delay irrespective of audio-video mis-synchronization. Hence,
all QoS parameters and their acceptable ranges should be
specified.

Secondly, as stated in Section I, both service providers and
consumers are aware of the service provider’s limitations in not
being able to always guarantee the contracted service quality
due to unforeseeable circumstances beyond their own control.
For example, in providing audio-video services, some service
interruptions or degradations at the server’s input/output ser-
vices may require the frame rate to be lowered, or the quality
of frames be degraded. In transport layer services of networks,
congestion may result in temporarily lowering the bandwidth
and increasing the end-to-end delay. Some applications may
be able to withstand such deviations from contracted minimal
requirements, while others may prefer a temporary suspension
of services. Therefore, not only the acceptable QoS levels,but
also a handling method for exceptions needs to be specified
in service contracts between the providers and the consumers
of QoS sensitive services.

Thirdly, the nature of the contractual agreement is a part
of the specification. For example, one server may wish to set
its own limits for a service, while another may be able to
accept consumer requests and make counter offers based on its
abilities and permissions. This is specially true in today’s web
based services, where new negotiation paradigms are being
experimented with. Therefore, the negotiation framework need
to be considered with QoS specifications.

3

<<QoS−Sensitive Actor>>
<<QoS−aware Use Case>>

Play Remote MovieVoD Client

(a)

qoSRange: QoSRange

negotiatiation: Negotiation

StructFeatureDef

exceptionHandling:ExceptionHandling

monitoring: Monitoring

(b)

Fig. 1. UML Extensions for Use Case

Fourthly, to avoid exploiting QoS parameters either by the
provider or the consumer of service, and to use as a condition
for raising an exception or to aid in the continued negotiation
process, most (but not all) providers and consumers of QoS
aware services use monitoring. Accordingly, monitoring capa-
bilities must be a part of the requirements specification of a
QoS cognizant specification.

B. QoS Aware Use Case

In design methodologies that use the UML design language,
Use Case models are used to specify the user’s requirements,
sometimes referred to as stakeholders interests in the system.
In order to utilize use cases for QoS based services, they need
to incorporate the following QoS requirements:

1) QoS parameters and their acceptable values or value
ranges.

2) Exception handling
3) QoS negotiation framework
4) QoS monitoring
To accommodate these aspects, we extend use case models

to supportQoS aware use caseswhere an actor in a QoS
aware use case is aQoS sensitive actor. As shown in Figure 1,
these extensions are stereotyped ([RJB99]) as≪QoS aware
use case≫ and≪QoS sensitive actor≫. In order
to extend use cases and actors, we propose four enhancements
to theStructFeatureDef class in the UML meta-model
([WK01]). The enhancements we propose are to include a
range for QoS parameters, an exception handling mechanism
and negotiator and a monitor, as shown in Figure 1(b).

We illustrate the use of theses aspects by an example spec-
ification and design of avideo on demand (VoD)multimedia
server. Our VoD service uses a client-server paradigm. Clients

request movies with specified QoS parameters (e.g. frame rate,
end-to-end delay, jitter, drop rate, and synchronization)for
delivery. If the server cannot satisfy the required movie QoS, a
negotiator in the VoD server bargains and negotiates acceptable
QoS parameters with the client. In addition, the server also
maintains a QoS monitor to provide QoS corrections to the
service, while the service is being provided.

We will discuss the requirement analysis and design issues
through multiple view modelwith UML. A multiple-view
model captures different aspects of a software product line, for
functional modeling, static modeling, and dynamic modeling.
Using the UML notation, the functional view is represented
through a use case model in the requirements phase, a static
model view through a class model, and a dynamic model view
through a collaboration model and a statechart model.

The use case model view addresses the functional require-
ments of a software product line in terms of use cases and
actors. An actor is a user type. A use case describes the
sequence of interactions between the actor and the system,
considered as a black box. Use case descriptions for the VoD
example are shown in Figure 2.

Now we give a typical usage scenario for our example
VoD server. Suppose the server receives a request for a movie
Doll.mov with the following QoS parameters.

• 30 frames/second (fps) for the audio with neither jitter
nor drops.

• 30 fps for video with a jitter of less than 3ms. and a
maximum drop rate of 0.1%.

The server checks and finds out thatDoll.mov is available
in its archive, and makes a counter offer of 25 fps but agrees
to the other QoS parameters. Finally, the QoS negotiation
results in, say, 28 fps, 0.01 drop rate for both audio and video
streams, and a maximum jitter of 3ms for video and 0ms for
audio streams. The server then begins to send the movie and
starts monitoring its services. The monitor checks for the QoS
periodically and informs the server of QoS violations. For
example, if the drop rate of video streams increases to 0.02,
the monitor will make the server renegotiate the QoS contract.
Say the new negotiation ends up with an updated QoS contract
of a maximum drop rate of 0.01 at 25 fps with less than 3
jitter rate for the video. This process can go on dynamically
until the movie transmission is complete or the negotiationis
unsuccessful.

IV. SOFTWARE ARCHITECTURE FORQOS SYSTEMS

Media types, service components for each media type, and
the structure of QoS systems should be considered at the
architectural level.

It is natural to assign amedia componentto each of the
media types of the QoS system such as audio, video, and

4

Use Case: Play Remote Movie
Scope: QoS Cognizant Multimedia Server System
Goal: Play a movie with specified QoS from a remote
server.
Context of Use: Multi-client VoD system.
Primary Actor : VoD Client.
Main Sequence:
1. VoD Client requests movie with specified QoS on
delivery.
2. VoD Server acknowledges requests and informs client if
requested movie is available.
3. Server obtains available QoS parameters.
4. If required QoS parameters can be satisfied, the Server
sends a positive acknowledgment message to the client.
5. The Server begins to send the movie and turns on
the QoS monitoring, QoS negotiation, and QoS exception
handling.
6. The Server sends an ending message at the end and close
the connection.
Alternatives:
1a. Un-acknowledged client times out.
1b. Request for unavailable movies are denied.
1c. Syntactically incorrect or semantically invalid requests
are refused.
1d. Defaults are substituted for unspecified or under-
specified QoS parameters.
2a. If the service capacity is exceeded, the client request
is queued.
2b. When feasible, queued requests are serviced.
3a. If service is overloaded, server returns service unavail-
able message to client.
4a. Service with QoS parameters outside the serviceable
range (such as video frame rate higher than 50 fps or audio-
video jitter larger than 5 ms), are refused.
4b. For service within serviceable range of QoS parameters,
but cannot be met due to service loads, the server’s
negotiator enters into a QoS negotiation session with the
client.
6. If there are any QoS violations reported from the monitor
during the service, the server warns the client and enters
in to QoS negotiation session again.

Fig. 2. Use Case Description

...

QoS System

 Media
Component 1

 Media
Component 2

 Media
Component n

 Server
Component

 Service
Component 1

 Service
Component n

... Service
Component 1 ...

...

 Service
Component m

Fig. 3. General Architecture of QoS Systems.

text, etc. However, if there is a tight correlation between two
components, it might be preferable to merge them into one. For
example, for a VoD server with an optional language selection
for audio and on-screen text, text and audio components can
be merged as a single media component.

Service componentsfor each media component should be
assigned according to the requirements of the applications.
Possible services for media components include negotiation,
monitoring, synchronization, resource management, and real-
time scheduling etc. Besides, aserver componentis needed for
managing media components. Server and media components
may or may not have the same service components. A general
architecture of QoS systems is given in Figure 3.

V. QOS MODELING FOR THEANALYSIS AND DESIGN

PHASES

The use cases proposed in the requirements gathering phase
must be analyzed and corresponding software artifacts de-
signed during the design phase of the software life cycle.
Based on this analysis, we propose that the QoS cognizant VoD
server consists of three major service components as follows:

• QoS negotiator
• QoS Monitor
• Resource manager

The first two components, the QoS negotiator and the QoS
monitor emerge as direct consequences of the requirements,
as the requirements specify the need for negotiation and
monitoring. The third component, theresource manageris
necessary because proper management of system resources is
critical for the performance of QoS cognizant services. The
resource manager is consulted by the negotiator in order to
find out if the available amount of system resources in making
admission control decisions and making appropriate counter
offers to the requested QoS parameters.

In particular, QoS cognizant services such as multimedia,
by their very nature require the combination of many sub-
services such as video and audio that may be cognizant
of sub-component QoS parameters. An example is that a
movie QoS may be specified in terms of audio QoS, video

5

User

Negotiator

 Resource
Capabilities

Negotiation

Resource
 Manager

 QoS
Monitor

 Audio
 QoS
Coordinator

 Video
 QoS
Coordinator

 Audio
Resource
 Manager

 Audio
Negotiator

 Audio
 QoS
Monitor

 Video
Resource
 Manager

 Video
Negotiator

 Video
 QoS
Monitor

 Multimedia
 QoS
Coordinator

Fig. 4. Static Structure of Multi-layered QoS Negotiation.

QoS and synchronization QoS parameters. Therefore, making
an estimate of available service capacity requires that these
components compute their respective capacities and provide
estimates so that the available capacity for the complete service
can be estimated.

What emerges from our analysis is the realization that
both the multimedia QoS server and audio, video server
components share the same structure of having negotiator,
resource manager, and monitor components. The negotiator
negotiates with higher or lower layers over QoS, the monitor
checks QoS parameters against the service, and the resource
manager handles allocation of resources such as CPU, buffer,
etc. Components of the higher layer negotiate with corre-
sponding components in the lower layer to get the available
QoS capabilities. They are shown in Figure 4. Secondly, QoS
parameters need to be specified using QoS parameters of
sub components and parameters qualifying their combination,
which we refer to as thesynchronizationcomponent.

A. Static Modeling

The static model is used to depict the static structural aspects
of a software product line by modeling classes, their attributes
and relationships between classes [Booch99]. Objects in the
collaboration model are instantiated from classes in the class
model.

Following the generic model shown in Figure 4, a class
diagram for the VoD server is given in Figure 5(a). The server
and its subsystems share a general structure: Each of them has
resource manager, negotiator, and monitor parts whose func-
tions are described above. The monitor class for example will
be responsible for checking QoS parameters of multimedia
components such as audio, video, and synchronization.

A QoS specification for a movie is shown in Figure 5(b).
In the example specification, the movie consisting of an audio
stream, and a video stream. Frame rates and drop rates of
individual streams are parameters of individual components

ServerNegotiator

VideoQoS

AudioNegotiatorVideoNegotiator

AudioServer VideoServer

<<system>>
MultimediaServer

1

11

has

Monitor

AudioMonitor VideoMonitor

1

1

Multimedia Client

AudioQoS

qos

0..*

has

SyncQoS

Stream

Video
Resource
Manager

Audio
Resource
Manager

Resource
Manager

Negotiates
 over

Monitors

has

uses

MovieQoS

has
has

has

(a) Class Diagram of Audio-Video Client-Server Application

Audio Video

Scene

Movie

Audio
Frame

Video
Frame

*

*

* *

*

(b) Movie Structure

Fig. 5. Server and Media Class Diagrams.

and allowable audio-video mis-synchronization limits in milli-
seconds are metrics of the combinations. Synchronization
components are implicitly assumed and are used to describe
inter-component synchronization between audio and video
streams and intra-component synchronization, such as max-
imum jitter within video frames [CT02].

The class diagram given in Figure 5(a) has associations
between VideoMonitor and VideoQoS, etc. The constraint that
VideoServer will only use VideoQoS also can be expressed
in OCL as follows:

Context: VideoServer
server.stream.qos−> forAll (oclType = VideoQoS)

Other constraints corresponding to relationships between
QoS types and the subcomponents of the negotiator, monitor,
and Resource Manager can be specified similarly.

6

�
�
�

�
�
�

��

�
�
�
�

�
�
�
�

 request

negotiating
 film
sending

processing
idle

Satisfied
QoS

negotiation successful

QoS violated

finish

request received

request rejected

negotiation
not

successful
QoS not
satisfied

Processing

Client QoS Servicing 1

Shutting Down

Starting

Client QoS
Servicing N

...

Fig. 6. Statechart for the Server.

B. Dynamic Modeling

As discussed earlier, a dynamic model view is represented
through a collaboration model and a statechart model. The
statechart model view, along with the collaboration model
view, addresses the dynamic aspects of a software product
line. A statechart is developed for each state dependent object
in the collaboration model. Each state dependent object in a
collaboration diagram is specified by means of a statechart.

The statechart diagram for the VoD server shown in Figure 6
describes the state dependent behavior of the server, where
the Processing substate includes several concurrent states
as a form of anand-state, each of which specifies the
state dependent behavior of client QoS request servicing. The
Statechart assumes that there is a fixed upper bound ofN to
the number of requests that can be processed by the server.

The collaboration model view addresses the dynamic as-
pects of a software product line. It is used to depict the objects
that participate in each use case, and the sequence of messages
passed between them [BRJ99], [Gom00].

The collaboration diagram shown in Figure 7(a) shows
the initialization phase of the system. The multimedia QoS
coordinator initializes Resource Manager, Negotiator, and
Monitor only once for the first request and other objects
are initialized for each request. When a new request is
received, the Multimedia QoS Coordinator will start Audio
QoS Coordinator and Video QoS Coordinator, each of which
will initialize corresponding resource managers, monitor, and
negotiator. Figure 7(b) shows the interactions between objects
for a successful service including a scenario in which specified
QoS is violated. In this phase, the Resource Manager allocates
resources for the current transaction by communicating with

Audio and Video Resource Managers. The Monitor checks
for QoS violations in audio, video, or in audio-video syn-
chronization. Negotiator will be responsible for buildingnew
service agreements with the client in the case of QoS service
degradations.

A more detailed interaction between different components
of the video server is given in a sequence diagram as shown in
Figure 8. The diagram depicts a transaction between the server
and the client, with a QoS violation. First, the client asks for a
movie with some QoS parameters (sequence 1.1). The server
obtains and offers its available QoS (1.2–1.12) and, if accepted
by the client (2.1), begins to send the movie (2.2) and asks the
monitors to monitor the QoS parameters (2.3–2.7). In the case
of a QoS violation (2.8), the server informs the client (2.9)and
negotiates for a new QoS (2.10–3.1). This process continues
till either the negotiation is not successful or the movie ends
(3.2). Due to space limitations, interactions between resource
managers and other components are not included.

Behavior of proposed components can be further specified
by writing appropriate OCL expressions. For example, the
video monitor and the synchronization monitor can be speci-
fied in OCL syntax as follows.

Context: VideoMonitor
Operation: checkQoS (s: Stream)
if (s.videoFrameSpeed6= 30)

return false
if (s.videoJitter> 0.003)

return false
if (s.videoDropRate> 0.001)

return false
return true

Context: Monitor
Operation: checkSynch (s: Stream)
if (s.AudioFrameNo< s.VideoFrameNo - 1)

return false
if (s.AudioFrameNo> s.VideoFrameNo + 3)

return false
return true

The OCL constraint for theVideoMonitor states that
maximum speed should be 30 fps, video jitter (i.e. delay
variation between successive video frames) should be less
than3ms and the drop rate should be less than0.1%. The
OCL constraints of theMonitor’s checkSync method states
that audio frames should not be behind video frames by more
than one frame, and video frames should not be behind audio
frames by more than three frames. As shown in Figure 8, if
there is any violation of QoS parameters, say an increase in
video drop rate that exceeds 0.1%, the Audio QoS Monitor

7

Client

Movie Request

Initialize

Initialize

Initialize

Initialize

Initialize
Initialize

Initialize
Start

Start

Initialize

Initialize

:Audio QoS
Coordinator

:AudioNegotiator

:Video
Resource
Manager

:VideoNegotiator

:VideoMonitor

:Monitor

:Multimedia
 QoS
Coordinator

:Resource
 Manager

:Audio
Resource
Manager

:AudioMonitor

:Negotiator

:Video QoS
Coordinator

Client Get
QoS

Monitor
 audio
 QoS

Monitor
 video
 QoS

 Get
audio
 QoS

 Get
video
 QoS

 Arrange
resources

:Server

:Resource
Manager

:Negotiator :Monitor

:VideoNegotiator

 :Audio
Resource
Manager

:AudioNegotiator

:Audio QoS
 Monitor

:Video QoS
 Monitor

QoS response

 Send
 audio
 QoS
Violation

 Send
 video
 QoS
Violation

send
video
 QoS

 send
audio
 QoS

 Arrange
 audio
resources

Arrange
 video
 resources

Send
QoS Monitor

 QoS

 Send QoS
violations

 Audio
 resource
allocated

 Video
resource
allocated

 :Video
Resource
Manager

 Resource
allocated

(a) Initiation Phase (b) Transmission Phase

Fig. 7. Collaboration Diagrams of the Multimedia System

NegotiatorServer VideoServerAudioServerClient Monitor VideoMonitorAudioMonitorAudioNegotiator VideoNegotiator

1.1

1.2
1.3

1.4

1.5

1.6

1.7

1.8
1.9

1.10
1.11

1.12

2.1

2.2

2.3
2.4

2.5

2.6

2.7
2.8

2.9

2.10
2.11

2.12

2.13

2.14

2.15
2.16

2.17

2.18
2.19

2.20

3.1

3.2

Fig. 8. Sequence Diagram of Audio-Video Client-Server Application with a QoS Violation.

will send a message to Monitor, which in turn informs the
Server. The Server will ask the Negotiator for a new set QoS
parameters with the Client.

As shown in this previous section, low-level QoS parameters
such as delay, latency, jitter, etc. are more easily specified in

OCL than high-level QoS characteristics such as availability,
guarantee, and mean time between failures. Ongoing work
is addressing how the latter parameters can be specified as
combinations of the former parameters.

8

. . .

. . .

Audio Stream

Video Stream

x1 x2

y1

Acceptable
 Interval

y2

Fig. 9. Audio-video Scheduling

VI. U SING UML D ESIGNS FORSCHEDULING

Specifying QoS parameters at requirements and design
phases can help to derive decisions on scheduling as shown
in Figure 9. Assuming, for example, a set of QoS parameters
are specified as follows:

Context:AudioStream
self.jitterRate = 0
self.dropRate = 0
Context:VideoStream
self.jitterRate≤ 0.003
self.dropRate≤ 0.001
Context:Stream
self.frameRate = 25
self.consecutiveSyncDrift< 10

How scheduling can be done for the constraints given above
can illustrated using Figure 9. The scheduler can derive that
the length of the ideal presentation interval should be between
40ms, according to the constraint that the frame rate for the
stream is 25Hz. Given that the audio jitter should be equal to
0, we can deduce that no difference in the presentation time is
tolerated. Therefore, the presentation interval between audio
packets,xi, should be equal to the ideal presentation interval.
From the constraint that the video jitter should be less than
or equal to 0.003(s), we can find out that difference between
length of presentation interval for video,yi, should be no more
than 3ms.

Constraints for drop rates indicate that audio and video drop
rates should not be more that 0% and 0.1%, respectively.
Consecutive synchronization drift ([WSNF99]), the largest
difference in presentation between two different media com-
ponents, is given to be 10(ms). This constraint asserts that
the variation in presentation time between audio and video
frames should not exceed 10ms. More constraints can be
specified for other requirements about media presentation and
synchronization. Further details on deriving scheduling from
QoS specifications can be found in [PSW00] and [WSNF99].

VII. C ONCLUSIONS ANDFUTURE WORK

Modular specification of components used in QoS cognizant
services increase their potential for reuse. We have shown
how some common components such as negotiators, monitors
and resource managers can be specified using UML models
enhanced with OCL constraints. As UML is emerging as the
standardized design language, these components can be reused
by different applications. We have shown how such generic
designs can be used to derive schedules for QoS cognizant
services.

Design models can be used in test case generation. However,
design models alone cannot express some of the design
constraints of the system. Therefore, generating test cases from
design models and OCL expressions is useful to have a more
complete test of the system under development.

After basic functional requirements are met, validity of the
software under development will be directly dependent upon
the performance of the system [WV00]. Gomaa and Menascé
[GM00], [MG00] and Grassi et al. [GM01] discuss a UML
approach based on performance analysis at architecture level.
However, there is limited literature on performance testing
using UML specifications. Future work includes using OCL to
test the functional and performance characteristics of software
systems.

REFERENCES

[BAVK01] M. Benyoucef, H. Alj, Vezeau, and R. Keller. Combined ne-
gotiations in e-commerce: Concepts and architecture.Electronic
Commerce Reasearch, vol. 1, 2001.

[BBBC98] G. Blair, L. Blair, H. Bowman, and A. Chetwynd.Formal
Specification of Distributed Multimedia Systems. UCL Press,
London, UK, 1998.

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

[CCH00] Andrew Campbell, Geoff Coulson, and David Hutchison. A
Quality of Service Architecture. Department of Computing,
Lancaster University, 2000.

[CT02] Stefan Conrad and Klaus Turowski. Temporal OCL: Meeting
Specification Demands for Business Components. 2002.

[GM00] Hassan Gomaa and Daniel Menascé. Design and Performance
Modeling of Component Interconnection Patterns for Distributed
Software Architectures. Proceedings Workshop on Software
Performance, ACM Press, Ottawa, Canada, 2000.

[GM01] Vincenzo Grassi and Raffaela Mirandola. UML Modelling of
Performance Analysis of Mobile Software Architecture.UML
2001, The Unified Modeling Language, 2001.

[Gom00] Hassan Gomaa.Designing Concurrent, Distributed, and Real-
Time Applications with UML. Addison-Wesley Object Technol-
ogy Series, 2000.

[HV97] Michi Henning and Steve Vinoski.Inside CORBA: Distributed
Object Standards and Applications. Addison-Wesley, 1997.

[MBD01] Daniel A. Menascé, Daniel Barbará, and Ronald Dodge. Pre-
serving QoS of E-commerce Sites through Self-Tuning: A Per-
formance Model Approach.EC’01, 2001.

[MG00] Daniel Menascé and Hassan Gomaa. A Method for Design
and Performance Modeling of Client/Server Systems.IEEE
Transactions on Software Engineering, Vol. 26, No.11, 2000.

9

[PSW00] Raymond A. Paul, Jaideep Srivastava, and Duminda Wijesek-
era. Test and Evaluation of Distributed Information Ssystems
Network. Journal of the International Test and Evaluation
Association, 2000.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified
Modeling Language Reference Manual. Addison-Wesley, 1999.

[Sel00] Bran Selic. A Generic Framework for Modeling Resources with
UML. IEEE, 2000.

[WCH] D. G. Waddington, G. Coulson, and D. Hutchison.Specifying QoS
Multimedia Communications within Distributed Programming
Environment. Department of Computing, Lancaster University.

[WK01] Jos Warmer and Anneke Kleppe.Unification of Static and
Dynamic Semantics of UML. UML 2001-The Unified Modeling
Language, Fourth International Conference, Springer Press, 2001.

[WSNF99] Duminda Wijesekera, Jaideep Srivastava, Anil Nerode, and Mark
Foreti. Experimental Evaluation of Loss Perception in Continuous
Media. IEEE Multimedia Systems, 1999.

[WV00] Eliane J. Weyuker and Filippos I. Vokolos. Experience with Per-
formance Testing of Software Systems: Issues, and Approaches,
and Case Study.IEEE Transactions on Software Engineering,
2000.

